| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version | ||
| Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| Ref | Expression |
|---|---|
| mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | fveq2 6826 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 5 | 4 | sqxpeqd 5655 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
| 6 | 5 | difeq1d 4078 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
| 7 | df-mdv 35460 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
| 8 | fvex 6839 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
| 9 | 8, 8 | xpex 7693 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
| 10 | difexg 5271 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
| 12 | 6, 7, 11 | fvmpt3i 6939 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 13 | 0dif 4358 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
| 14 | 13 | eqcomi 2738 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
| 15 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
| 16 | fvprc 6818 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
| 17 | 3, 16 | eqtrid 2776 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
| 18 | 17 | xpeq2d 5653 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
| 19 | xp0 6111 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2780 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
| 21 | 20 | difeq1d 4078 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
| 22 | 14, 15, 21 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
| 24 | 1, 23 | eqtri 2752 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 I cid 5517 × cxp 5621 ‘cfv 6486 mVRcmvar 35433 mDVcmdv 35440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-mdv 35460 |
| This theorem is referenced by: mthmpps 35554 mclsppslem 35555 |
| Copyright terms: Public domain | W3C validator |