![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version |
Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
Ref | Expression |
---|---|
mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | fveq2 6892 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
4 | 2, 3 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
5 | 4 | sqxpeqd 5709 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
6 | 5 | difeq1d 4122 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
7 | df-mdv 34510 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
8 | fvex 6905 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
9 | 8, 8 | xpex 7740 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
10 | difexg 5328 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
12 | 6, 7, 11 | fvmpt3i 7004 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
13 | 0dif 4402 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
14 | 13 | eqcomi 2742 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
15 | fvprc 6884 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
16 | fvprc 6884 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
17 | 3, 16 | eqtrid 2785 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
18 | 17 | xpeq2d 5707 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
19 | xp0 6158 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
20 | 18, 19 | eqtrdi 2789 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
21 | 20 | difeq1d 4122 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
22 | 14, 15, 21 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
24 | 1, 23 | eqtri 2761 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 ∅c0 4323 I cid 5574 × cxp 5675 ‘cfv 6544 mVRcmvar 34483 mDVcmdv 34490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-mdv 34510 |
This theorem is referenced by: mthmpps 34604 mclsppslem 34605 |
Copyright terms: Public domain | W3C validator |