| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version | ||
| Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| Ref | Expression |
|---|---|
| mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | fveq2 6861 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 5 | 4 | sqxpeqd 5673 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
| 6 | 5 | difeq1d 4091 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
| 7 | df-mdv 35482 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
| 8 | fvex 6874 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
| 9 | 8, 8 | xpex 7732 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
| 10 | difexg 5287 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
| 12 | 6, 7, 11 | fvmpt3i 6976 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 13 | 0dif 4371 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
| 14 | 13 | eqcomi 2739 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
| 15 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
| 16 | fvprc 6853 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
| 17 | 3, 16 | eqtrid 2777 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
| 18 | 17 | xpeq2d 5671 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
| 19 | xp0 6134 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
| 21 | 20 | difeq1d 4091 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
| 22 | 14, 15, 21 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
| 24 | 1, 23 | eqtri 2753 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 I cid 5535 × cxp 5639 ‘cfv 6514 mVRcmvar 35455 mDVcmdv 35462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-mdv 35482 |
| This theorem is referenced by: mthmpps 35576 mclsppslem 35577 |
| Copyright terms: Public domain | W3C validator |