| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version | ||
| Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| Ref | Expression |
|---|---|
| mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | fveq2 6876 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 5 | 4 | sqxpeqd 5686 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
| 6 | 5 | difeq1d 4100 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
| 7 | df-mdv 35510 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
| 8 | fvex 6889 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
| 9 | 8, 8 | xpex 7747 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
| 10 | difexg 5299 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
| 12 | 6, 7, 11 | fvmpt3i 6991 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 13 | 0dif 4380 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
| 14 | 13 | eqcomi 2744 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
| 15 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
| 16 | fvprc 6868 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
| 17 | 3, 16 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
| 18 | 17 | xpeq2d 5684 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
| 19 | xp0 6147 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2786 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
| 21 | 20 | difeq1d 4100 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
| 22 | 14, 15, 21 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
| 24 | 1, 23 | eqtri 2758 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 I cid 5547 × cxp 5652 ‘cfv 6531 mVRcmvar 35483 mDVcmdv 35490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-mdv 35510 |
| This theorem is referenced by: mthmpps 35604 mclsppslem 35605 |
| Copyright terms: Public domain | W3C validator |