Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdvval Structured version   Visualization version   GIF version

Theorem mdvval 35472
Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mdvval.v 𝑉 = (mVR‘𝑇)
mdvval.d 𝐷 = (mDV‘𝑇)
Assertion
Ref Expression
mdvval 𝐷 = ((𝑉 × 𝑉) ∖ I )

Proof of Theorem mdvval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mdvval.d . 2 𝐷 = (mDV‘𝑇)
2 fveq2 6920 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mdvval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
42, 3eqtr4di 2798 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
54sqxpeqd 5732 . . . . 5 (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉))
65difeq1d 4148 . . . 4 (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I ))
7 df-mdv 35456 . . . 4 mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
8 fvex 6933 . . . . . 6 (mVR‘𝑡) ∈ V
98, 8xpex 7788 . . . . 5 ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V
10 difexg 5347 . . . . 5 (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V)
119, 10ax-mp 5 . . . 4 (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V
126, 7, 11fvmpt3i 7034 . . 3 (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
13 0dif 4428 . . . . 5 (∅ ∖ I ) = ∅
1413eqcomi 2749 . . . 4 ∅ = (∅ ∖ I )
15 fvprc 6912 . . . 4 𝑇 ∈ V → (mDV‘𝑇) = ∅)
16 fvprc 6912 . . . . . . . 8 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16eqtrid 2792 . . . . . . 7 𝑇 ∈ V → 𝑉 = ∅)
1817xpeq2d 5730 . . . . . 6 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅))
19 xp0 6189 . . . . . 6 (𝑉 × ∅) = ∅
2018, 19eqtrdi 2796 . . . . 5 𝑇 ∈ V → (𝑉 × 𝑉) = ∅)
2120difeq1d 4148 . . . 4 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I ))
2214, 15, 213eqtr4a 2806 . . 3 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
2312, 22pm2.61i 182 . 2 (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )
241, 23eqtri 2768 1 𝐷 = ((𝑉 × 𝑉) ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  c0 4352   I cid 5592   × cxp 5698  cfv 6573  mVRcmvar 35429  mDVcmdv 35436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mdv 35456
This theorem is referenced by:  mthmpps  35550  mclsppslem  35551
  Copyright terms: Public domain W3C validator