| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version | ||
| Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
| Ref | Expression |
|---|---|
| mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
| 2 | fveq2 6822 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 5 | 4 | sqxpeqd 5648 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
| 6 | 5 | difeq1d 4075 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
| 7 | df-mdv 35520 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
| 8 | fvex 6835 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
| 9 | 8, 8 | xpex 7686 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
| 10 | difexg 5267 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
| 12 | 6, 7, 11 | fvmpt3i 6934 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 13 | 0dif 4355 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
| 14 | 13 | eqcomi 2740 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
| 15 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
| 16 | fvprc 6814 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
| 17 | 3, 16 | eqtrid 2778 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
| 18 | 17 | xpeq2d 5646 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
| 19 | xp0 6105 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
| 21 | 20 | difeq1d 4075 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
| 22 | 14, 15, 21 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
| 23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
| 24 | 1, 23 | eqtri 2754 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∅c0 4283 I cid 5510 × cxp 5614 ‘cfv 6481 mVRcmvar 35493 mDVcmdv 35500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-mdv 35520 |
| This theorem is referenced by: mthmpps 35614 mclsppslem 35615 |
| Copyright terms: Public domain | W3C validator |