![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mdvval | Structured version Visualization version GIF version |
Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mdvval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mdvval.d | ⊢ 𝐷 = (mDV‘𝑇) |
Ref | Expression |
---|---|
mdvval | ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdvval.d | . 2 ⊢ 𝐷 = (mDV‘𝑇) | |
2 | fveq2 6842 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
3 | mdvval.v | . . . . . . 7 ⊢ 𝑉 = (mVR‘𝑇) | |
4 | 2, 3 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
5 | 4 | sqxpeqd 5665 | . . . . 5 ⊢ (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉)) |
6 | 5 | difeq1d 4081 | . . . 4 ⊢ (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I )) |
7 | df-mdv 34082 | . . . 4 ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | |
8 | fvex 6855 | . . . . . 6 ⊢ (mVR‘𝑡) ∈ V | |
9 | 8, 8 | xpex 7687 | . . . . 5 ⊢ ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V |
10 | difexg 5284 | . . . . 5 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V |
12 | 6, 7, 11 | fvmpt3i 6953 | . . 3 ⊢ (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
13 | 0dif 4361 | . . . . 5 ⊢ (∅ ∖ I ) = ∅ | |
14 | 13 | eqcomi 2745 | . . . 4 ⊢ ∅ = (∅ ∖ I ) |
15 | fvprc 6834 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ∅) | |
16 | fvprc 6834 | . . . . . . . 8 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
17 | 3, 16 | eqtrid 2788 | . . . . . . 7 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
18 | 17 | xpeq2d 5663 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅)) |
19 | xp0 6110 | . . . . . 6 ⊢ (𝑉 × ∅) = ∅ | |
20 | 18, 19 | eqtrdi 2792 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (𝑉 × 𝑉) = ∅) |
21 | 20 | difeq1d 4081 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I )) |
22 | 14, 15, 21 | 3eqtr4a 2802 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )) |
23 | 12, 22 | pm2.61i 182 | . 2 ⊢ (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ) |
24 | 1, 23 | eqtri 2764 | 1 ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∖ cdif 3907 ∅c0 4282 I cid 5530 × cxp 5631 ‘cfv 6496 mVRcmvar 34055 mDVcmdv 34062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-iota 6448 df-fun 6498 df-fv 6504 df-mdv 34082 |
This theorem is referenced by: mthmpps 34176 mclsppslem 34177 |
Copyright terms: Public domain | W3C validator |