Detailed syntax breakdown of Definition df-mvrs
| Step | Hyp | Ref
| Expression |
| 1 | | cmvrs 35458 |
. 2
class
mVars |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3455 |
. . 3
class
V |
| 4 | | ve |
. . . 4
setvar 𝑒 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑡 |
| 6 | | cmex 35456 |
. . . . 5
class
mEx |
| 7 | 5, 6 | cfv 6519 |
. . . 4
class
(mEx‘𝑡) |
| 8 | 4 | cv 1539 |
. . . . . . 7
class 𝑒 |
| 9 | | c2nd 7976 |
. . . . . . 7
class
2nd |
| 10 | 8, 9 | cfv 6519 |
. . . . . 6
class
(2nd ‘𝑒) |
| 11 | 10 | crn 5647 |
. . . . 5
class ran
(2nd ‘𝑒) |
| 12 | | cmvar 35450 |
. . . . . 6
class
mVR |
| 13 | 5, 12 | cfv 6519 |
. . . . 5
class
(mVR‘𝑡) |
| 14 | 11, 13 | cin 3921 |
. . . 4
class (ran
(2nd ‘𝑒)
∩ (mVR‘𝑡)) |
| 15 | 4, 7, 14 | cmpt 5196 |
. . 3
class (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd
‘𝑒) ∩
(mVR‘𝑡))) |
| 16 | 2, 3, 15 | cmpt 5196 |
. 2
class (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd
‘𝑒) ∩
(mVR‘𝑡)))) |
| 17 | 1, 16 | wceq 1540 |
1
wff mVars =
(𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd
‘𝑒) ∩
(mVR‘𝑡)))) |