Detailed syntax breakdown of Definition df-meet
Step | Hyp | Ref
| Expression |
1 | | cmee 18039 |
. 2
class
meet |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | | vy |
. . . . . . 7
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑦 |
8 | 5, 7 | cpr 4564 |
. . . . 5
class {𝑥, 𝑦} |
9 | | vz |
. . . . . 6
setvar 𝑧 |
10 | 9 | cv 1538 |
. . . . 5
class 𝑧 |
11 | 2 | cv 1538 |
. . . . . 6
class 𝑝 |
12 | | cglb 18037 |
. . . . . 6
class
glb |
13 | 11, 12 | cfv 6437 |
. . . . 5
class
(glb‘𝑝) |
14 | 8, 10, 13 | wbr 5075 |
. . . 4
wff {𝑥, 𝑦} (glb‘𝑝)𝑧 |
15 | 14, 4, 6, 9 | coprab 7285 |
. . 3
class
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} |
16 | 2, 3, 15 | cmpt 5158 |
. 2
class (𝑝 ∈ V ↦
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) |
17 | 1, 16 | wceq 1539 |
1
wff meet =
(𝑝 ∈ V ↦
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) |