MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   GIF version

Theorem meetfval 18020
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 18021 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐾𝑉𝐾 ∈ V)
2 meetfval.m . . 3 = (meet‘𝐾)
3 fvex 6769 . . . . . . 7 (Base‘𝐾) ∈ V
4 moeq 3637 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
54a1i 11 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))
6 eqid 2738 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}
73, 3, 5, 6oprabex 7792 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V
87a1i 11 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V)
9 meetfval.u . . . . . . . . . . . 12 𝐺 = (glb‘𝐾)
109glbfun 17998 . . . . . . . . . . 11 Fun 𝐺
11 funbrfv2b 6809 . . . . . . . . . . 11 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
1210, 11ax-mp 5 . . . . . . . . . 10 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
13 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2738 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
15 simpl 482 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → 𝐾 ∈ V)
16 simpr 484 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ∈ dom 𝐺)
1713, 14, 9, 15, 16glbelss 18000 . . . . . . . . . . . . 13 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
1817ex 412 . . . . . . . . . . . 12 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → {𝑥, 𝑦} ⊆ (Base‘𝐾)))
19 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
20 vex 3426 . . . . . . . . . . . . 13 𝑦 ∈ V
2119, 20prss 4750 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
2218, 21syl6ibr 251 . . . . . . . . . . 11 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
23 eqcom 2745 . . . . . . . . . . . 12 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2423biimpi 215 . . . . . . . . . . 11 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2522, 24anim12d1 609 . . . . . . . . . 10 (𝐾 ∈ V → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2612, 25syl5bi 241 . . . . . . . . 9 (𝐾 ∈ V → ({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2726alrimiv 1931 . . . . . . . 8 (𝐾 ∈ V → ∀𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2827alrimiv 1931 . . . . . . 7 (𝐾 ∈ V → ∀𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2928alrimiv 1931 . . . . . 6 (𝐾 ∈ V → ∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
30 ssoprab2 7321 . . . . . 6 (∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
3129, 30syl 17 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
328, 31ssexd 5243 . . . 4 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V)
33 fveq2 6756 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
3433, 9eqtr4di 2797 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
3534breqd 5081 . . . . . 6 (𝑝 = 𝐾 → ({𝑥, 𝑦} (glb‘𝑝)𝑧 ↔ {𝑥, 𝑦}𝐺𝑧))
3635oprabbidv 7319 . . . . 5 (𝑝 = 𝐾 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
37 df-meet 17982 . . . . 5 meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
3836, 37fvmptg 6855 . . . 4 ((𝐾 ∈ V ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V) → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
3932, 38mpdan 683 . . 3 (𝐾 ∈ V → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
402, 39eqtrid 2790 . 2 (𝐾 ∈ V → = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
411, 40syl 17 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  Vcvv 3422  wss 3883  {cpr 4560   class class class wbr 5070  dom cdm 5580  Fun wfun 6412  cfv 6418  {coprab 7256  Basecbs 16840  lecple 16895  glbcglb 17943  meetcmee 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-oprab 7259  df-glb 17980  df-meet 17982
This theorem is referenced by:  meetfval2  18021  meet0  18039  odujoin  18041  odumeet  18043
  Copyright terms: Public domain W3C validator