MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   GIF version

Theorem meetfval 17620
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17621 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝑉𝐾 ∈ V)
2 meetfval.m . . 3 = (meet‘𝐾)
3 fvex 6676 . . . . . . 7 (Base‘𝐾) ∈ V
4 moeq 3694 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
54a1i 11 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))
6 eqid 2820 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}
73, 3, 5, 6oprabex 7670 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V
87a1i 11 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V)
9 meetfval.u . . . . . . . . . . . 12 𝐺 = (glb‘𝐾)
109glbfun 17598 . . . . . . . . . . 11 Fun 𝐺
11 funbrfv2b 6716 . . . . . . . . . . 11 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
1210, 11ax-mp 5 . . . . . . . . . 10 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
13 eqid 2820 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2820 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
15 simpl 485 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → 𝐾 ∈ V)
16 simpr 487 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ∈ dom 𝐺)
1713, 14, 9, 15, 16glbelss 17600 . . . . . . . . . . . . 13 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
1817ex 415 . . . . . . . . . . . 12 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → {𝑥, 𝑦} ⊆ (Base‘𝐾)))
19 vex 3494 . . . . . . . . . . . . 13 𝑥 ∈ V
20 vex 3494 . . . . . . . . . . . . 13 𝑦 ∈ V
2119, 20prss 4746 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
2218, 21syl6ibr 254 . . . . . . . . . . 11 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
23 eqcom 2827 . . . . . . . . . . . 12 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2423biimpi 218 . . . . . . . . . . 11 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2522, 24anim12d1 611 . . . . . . . . . 10 (𝐾 ∈ V → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2612, 25syl5bi 244 . . . . . . . . 9 (𝐾 ∈ V → ({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2726alrimiv 1927 . . . . . . . 8 (𝐾 ∈ V → ∀𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2827alrimiv 1927 . . . . . . 7 (𝐾 ∈ V → ∀𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2928alrimiv 1927 . . . . . 6 (𝐾 ∈ V → ∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
30 ssoprab2 7215 . . . . . 6 (∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
3129, 30syl 17 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
328, 31ssexd 5221 . . . 4 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V)
33 fveq2 6663 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
3433, 9syl6eqr 2873 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
3534breqd 5070 . . . . . 6 (𝑝 = 𝐾 → ({𝑥, 𝑦} (glb‘𝑝)𝑧 ↔ {𝑥, 𝑦}𝐺𝑧))
3635oprabbidv 7213 . . . . 5 (𝑝 = 𝐾 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
37 df-meet 17582 . . . . 5 meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
3836, 37fvmptg 6759 . . . 4 ((𝐾 ∈ V ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V) → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
3932, 38mpdan 685 . . 3 (𝐾 ∈ V → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
402, 39syl5eq 2867 . 2 (𝐾 ∈ V → = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
411, 40syl 17 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534   = wceq 1536  wcel 2113  ∃*wmo 2619  Vcvv 3491  wss 3929  {cpr 4562   class class class wbr 5059  dom cdm 5548  Fun wfun 6342  cfv 6348  {coprab 7150  Basecbs 16478  lecple 16567  glbcglb 17548  meetcmee 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-oprab 7153  df-glb 17580  df-meet 17582
This theorem is referenced by:  meetfval2  17621  meet0  17742  odumeet  17745  odujoin  17747
  Copyright terms: Public domain W3C validator