MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   GIF version

Theorem meetfval 17604
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17605 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3491 . 2 (𝐾𝑉𝐾 ∈ V)
2 meetfval.m . . 3 = (meet‘𝐾)
3 fvex 6659 . . . . . . 7 (Base‘𝐾) ∈ V
4 moeq 3678 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
54a1i 11 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))
6 eqid 2820 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}
73, 3, 5, 6oprabex 7655 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V
87a1i 11 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} ∈ V)
9 meetfval.u . . . . . . . . . . . 12 𝐺 = (glb‘𝐾)
109glbfun 17582 . . . . . . . . . . 11 Fun 𝐺
11 funbrfv2b 6699 . . . . . . . . . . 11 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
1210, 11ax-mp 5 . . . . . . . . . 10 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
13 eqid 2820 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2820 . . . . . . . . . . . . . 14 (le‘𝐾) = (le‘𝐾)
15 simpl 485 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → 𝐾 ∈ V)
16 simpr 487 . . . . . . . . . . . . . 14 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ∈ dom 𝐺)
1713, 14, 9, 15, 16glbelss 17584 . . . . . . . . . . . . 13 ((𝐾 ∈ V ∧ {𝑥, 𝑦} ∈ dom 𝐺) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
1817ex 415 . . . . . . . . . . . 12 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → {𝑥, 𝑦} ⊆ (Base‘𝐾)))
19 vex 3476 . . . . . . . . . . . . 13 𝑥 ∈ V
20 vex 3476 . . . . . . . . . . . . 13 𝑦 ∈ V
2119, 20prss 4729 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
2218, 21syl6ibr 254 . . . . . . . . . . 11 (𝐾 ∈ V → ({𝑥, 𝑦} ∈ dom 𝐺 → (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))))
23 eqcom 2827 . . . . . . . . . . . 12 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2423biimpi 218 . . . . . . . . . . 11 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
2522, 24anim12d1 611 . . . . . . . . . 10 (𝐾 ∈ V → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2612, 25syl5bi 244 . . . . . . . . 9 (𝐾 ∈ V → ({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2726alrimiv 1928 . . . . . . . 8 (𝐾 ∈ V → ∀𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2827alrimiv 1928 . . . . . . 7 (𝐾 ∈ V → ∀𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
2928alrimiv 1928 . . . . . 6 (𝐾 ∈ V → ∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))))
30 ssoprab2 7199 . . . . . 6 (∀𝑥𝑦𝑧({𝑥, 𝑦}𝐺𝑧 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
3129, 30syl 17 . . . . 5 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))})
328, 31ssexd 5204 . . . 4 (𝐾 ∈ V → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V)
33 fveq2 6646 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
3433, 9syl6eqr 2873 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
3534breqd 5053 . . . . . 6 (𝑝 = 𝐾 → ({𝑥, 𝑦} (glb‘𝑝)𝑧 ↔ {𝑥, 𝑦}𝐺𝑧))
3635oprabbidv 7197 . . . . 5 (𝑝 = 𝐾 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
37 df-meet 17566 . . . . 5 meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
3836, 37fvmptg 6742 . . . 4 ((𝐾 ∈ V ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} ∈ V) → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
3932, 38mpdan 685 . . 3 (𝐾 ∈ V → (meet‘𝐾) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
402, 39syl5eq 2867 . 2 (𝐾 ∈ V → = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
411, 40syl 17 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  Vcvv 3473  wss 3913  {cpr 4545   class class class wbr 5042  dom cdm 5531  Fun wfun 6325  cfv 6331  {coprab 7134  Basecbs 16462  lecple 16551  glbcglb 17532  meetcmee 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-oprab 7137  df-glb 17564  df-meet 17566
This theorem is referenced by:  meetfval2  17605  meet0  17726  odumeet  17729  odujoin  17731
  Copyright terms: Public domain W3C validator