MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubfval Structured version   Visualization version   GIF version

Theorem lubfval 18068
Description: Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubfval (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lubfval.k . 2 (𝜑𝐾𝑉)
2 elex 3450 . 2 (𝐾𝑉𝐾 ∈ V)
3 fveq2 6774 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 lubfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2796 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65pweqd 4552 . . . . . 6 (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵)
7 fveq2 6774 . . . . . . . . . . 11 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
8 lubfval.l . . . . . . . . . . 11 = (le‘𝐾)
97, 8eqtr4di 2796 . . . . . . . . . 10 (𝑝 = 𝐾 → (le‘𝑝) = )
109breqd 5085 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑦(le‘𝑝)𝑥𝑦 𝑥))
1110ralbidv 3112 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ↔ ∀𝑦𝑠 𝑦 𝑥))
129breqd 5085 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑦(le‘𝑝)𝑧𝑦 𝑧))
1312ralbidv 3112 . . . . . . . . . 10 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑦(le‘𝑝)𝑧 ↔ ∀𝑦𝑠 𝑦 𝑧))
149breqd 5085 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑧𝑥 𝑧))
1513, 14imbi12d 345 . . . . . . . . 9 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧) ↔ (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
165, 15raleqbidv 3336 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
1711, 16anbi12d 631 . . . . . . 7 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
185, 17riotaeqbidv 7235 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))) = (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
196, 18mpteq12dv 5165 . . . . 5 (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))))
2017reubidv 3323 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
21 reueq1 3344 . . . . . . . 8 ((Base‘𝑝) = 𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
225, 21syl 17 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
2320, 22bitrd 278 . . . . . 6 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
2423abbidv 2807 . . . . 5 (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
2519, 24reseq12d 5892 . . . 4 (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
26 df-lub 18064 . . . 4 lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}))
274fvexi 6788 . . . . . . 7 𝐵 ∈ V
2827pwex 5303 . . . . . 6 𝒫 𝐵 ∈ V
2928mptex 7099 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ∈ V
3029resex 5939 . . . 4 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}) ∈ V
3125, 26, 30fvmpt 6875 . . 3 (𝐾 ∈ V → (lub‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
32 lubfval.u . . 3 𝑈 = (lub‘𝐾)
33 lubfval.p . . . . . . 7 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3433a1i 11 . . . . . 6 (𝑥𝐵 → (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
3534riotabiia 7253 . . . . 5 (𝑥𝐵 𝜓) = (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3635mpteq2i 5179 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
3733reubii 3325 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3837abbii 2808 . . . 4 {𝑠 ∣ ∃!𝑥𝐵 𝜓} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}
3936, 38reseq12i 5889 . . 3 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
4031, 32, 393eqtr4g 2803 . 2 (𝐾 ∈ V → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
411, 2, 403syl 18 1 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  ∃!wreu 3066  Vcvv 3432  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cres 5591  cfv 6433  crio 7231  Basecbs 16912  lecple 16969  lubclub 18027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-lub 18064
This theorem is referenced by:  lubdm  18069  lubfun  18070  lubval  18074  join0  18123  odulub  18125  oduglb  18127
  Copyright terms: Public domain W3C validator