MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubfval Structured version   Visualization version   GIF version

Theorem lubfval 17717
Description: Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
lubfval.b 𝐵 = (Base‘𝐾)
lubfval.l = (le‘𝐾)
lubfval.u 𝑈 = (lub‘𝐾)
lubfval.p (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
lubfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
lubfval (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem lubfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 lubfval.k . 2 (𝜑𝐾𝑉)
2 elex 3418 . 2 (𝐾𝑉𝐾 ∈ V)
3 fveq2 6687 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 lubfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2792 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65pweqd 4517 . . . . . 6 (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵)
7 fveq2 6687 . . . . . . . . . . 11 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
8 lubfval.l . . . . . . . . . . 11 = (le‘𝐾)
97, 8eqtr4di 2792 . . . . . . . . . 10 (𝑝 = 𝐾 → (le‘𝑝) = )
109breqd 5051 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑦(le‘𝑝)𝑥𝑦 𝑥))
1110ralbidv 3110 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ↔ ∀𝑦𝑠 𝑦 𝑥))
129breqd 5051 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑦(le‘𝑝)𝑧𝑦 𝑧))
1312ralbidv 3110 . . . . . . . . . 10 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑦(le‘𝑝)𝑧 ↔ ∀𝑦𝑠 𝑦 𝑧))
149breqd 5051 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑧𝑥 𝑧))
1513, 14imbi12d 348 . . . . . . . . 9 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧) ↔ (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
165, 15raleqbidv 3305 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
1711, 16anbi12d 634 . . . . . . 7 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
185, 17riotaeqbidv 7143 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))) = (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
196, 18mpteq12dv 5125 . . . . 5 (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))))
2017reubidv 3293 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
21 reueq1 3313 . . . . . . . 8 ((Base‘𝑝) = 𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
225, 21syl 17 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
2320, 22bitrd 282 . . . . . 6 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
2423abbidv 2803 . . . . 5 (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
2519, 24reseq12d 5836 . . . 4 (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
26 df-lub 17713 . . . 4 lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}))
274fvexi 6701 . . . . . . 7 𝐵 ∈ V
2827pwex 5257 . . . . . 6 𝒫 𝐵 ∈ V
2928mptex 7009 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ∈ V
3029resex 5883 . . . 4 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}) ∈ V
3125, 26, 30fvmpt 6788 . . 3 (𝐾 ∈ V → (lub‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
32 lubfval.u . . 3 𝑈 = (lub‘𝐾)
33 lubfval.p . . . . . . 7 (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3433a1i 11 . . . . . 6 (𝑥𝐵 → (𝜓 ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
3534riotabiia 7161 . . . . 5 (𝑥𝐵 𝜓) = (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3635mpteq2i 5132 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
3733reubii 3295 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
3837abbii 2804 . . . 4 {𝑠 ∣ ∃!𝑥𝐵 𝜓} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}
3936, 38reseq12i 5833 . . 3 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
4031, 32, 393eqtr4g 2799 . 2 (𝐾 ∈ V → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
411, 2, 403syl 18 1 (𝜑𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2717  wral 3054  ∃!wreu 3056  Vcvv 3400  𝒫 cpw 4498   class class class wbr 5040  cmpt 5120  cres 5537  cfv 6350  crio 7139  Basecbs 16599  lecple 16688  lubclub 17681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-lub 17713
This theorem is referenced by:  lubdm  17718  lubfun  17719  lubval  17723  join0  17877  oduglb  17878  odulub  17880
  Copyright terms: Public domain W3C validator