Detailed syntax breakdown of Definition df-mend
| Step | Hyp | Ref
| Expression |
| 1 | | cmend 43183 |
. 2
class
MEndo |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑚 |
| 6 | | clmhm 21018 |
. . . . 5
class
LMHom |
| 7 | 5, 5, 6 | co 7431 |
. . . 4
class (𝑚 LMHom 𝑚) |
| 8 | | cnx 17230 |
. . . . . . . 8
class
ndx |
| 9 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 10 | 8, 9 | cfv 6561 |
. . . . . . 7
class
(Base‘ndx) |
| 11 | 4 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 12 | 10, 11 | cop 4632 |
. . . . . 6
class
〈(Base‘ndx), 𝑏〉 |
| 13 | | cplusg 17297 |
. . . . . . . 8
class
+g |
| 14 | 8, 13 | cfv 6561 |
. . . . . . 7
class
(+g‘ndx) |
| 15 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 16 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 17 | 15 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 18 | 16 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 19 | 5, 13 | cfv 6561 |
. . . . . . . . . 10
class
(+g‘𝑚) |
| 20 | 19 | cof 7695 |
. . . . . . . . 9
class
∘f (+g‘𝑚) |
| 21 | 17, 18, 20 | co 7431 |
. . . . . . . 8
class (𝑥 ∘f
(+g‘𝑚)𝑦) |
| 22 | 15, 16, 11, 11, 21 | cmpo 7433 |
. . . . . . 7
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦)) |
| 23 | 14, 22 | cop 4632 |
. . . . . 6
class
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉 |
| 24 | | cmulr 17298 |
. . . . . . . 8
class
.r |
| 25 | 8, 24 | cfv 6561 |
. . . . . . 7
class
(.r‘ndx) |
| 26 | 17, 18 | ccom 5689 |
. . . . . . . 8
class (𝑥 ∘ 𝑦) |
| 27 | 15, 16, 11, 11, 26 | cmpo 7433 |
. . . . . . 7
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦)) |
| 28 | 25, 27 | cop 4632 |
. . . . . 6
class
〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉 |
| 29 | 12, 23, 28 | ctp 4630 |
. . . . 5
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} |
| 30 | | csca 17300 |
. . . . . . . 8
class
Scalar |
| 31 | 8, 30 | cfv 6561 |
. . . . . . 7
class
(Scalar‘ndx) |
| 32 | 5, 30 | cfv 6561 |
. . . . . . 7
class
(Scalar‘𝑚) |
| 33 | 31, 32 | cop 4632 |
. . . . . 6
class
〈(Scalar‘ndx), (Scalar‘𝑚)〉 |
| 34 | | cvsca 17301 |
. . . . . . . 8
class
·𝑠 |
| 35 | 8, 34 | cfv 6561 |
. . . . . . 7
class (
·𝑠 ‘ndx) |
| 36 | 32, 9 | cfv 6561 |
. . . . . . . 8
class
(Base‘(Scalar‘𝑚)) |
| 37 | 5, 9 | cfv 6561 |
. . . . . . . . . 10
class
(Base‘𝑚) |
| 38 | 17 | csn 4626 |
. . . . . . . . . 10
class {𝑥} |
| 39 | 37, 38 | cxp 5683 |
. . . . . . . . 9
class
((Base‘𝑚)
× {𝑥}) |
| 40 | 5, 34 | cfv 6561 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑚) |
| 41 | 40 | cof 7695 |
. . . . . . . . 9
class
∘f ( ·𝑠 ‘𝑚) |
| 42 | 39, 18, 41 | co 7431 |
. . . . . . . 8
class
(((Base‘𝑚)
× {𝑥})
∘f ( ·𝑠 ‘𝑚)𝑦) |
| 43 | 15, 16, 36, 11, 42 | cmpo 7433 |
. . . . . . 7
class (𝑥 ∈
(Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦)) |
| 44 | 35, 43 | cop 4632 |
. . . . . 6
class 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉 |
| 45 | 33, 44 | cpr 4628 |
. . . . 5
class
{〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉} |
| 46 | 29, 45 | cun 3949 |
. . . 4
class
({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉}) |
| 47 | 4, 7, 46 | csb 3899 |
. . 3
class
⦋(𝑚
LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉}) |
| 48 | 2, 3, 47 | cmpt 5225 |
. 2
class (𝑚 ∈ V ↦
⦋(𝑚 LMHom
𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉})) |
| 49 | 1, 48 | wceq 1540 |
1
wff MEndo =
(𝑚 ∈ V ↦
⦋(𝑚 LMHom
𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉})) |