Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   GIF version

Theorem mendval 41008
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b 𝐵 = (𝑀 LMHom 𝑀)
mendval.p + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
mendval.t × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
mendval.s 𝑆 = (Scalar‘𝑀)
mendval.v · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
mendval (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mendval
Dummy variables 𝑚 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝑀𝑋𝑀 ∈ V)
2 oveq12 7284 . . . . . . 7 ((𝑚 = 𝑀𝑚 = 𝑀) → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
32anidms 567 . . . . . 6 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
4 mendval.b . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
53, 4eqtr4di 2796 . . . . 5 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = 𝐵)
65csbeq1d 3836 . . . 4 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
7 ovex 7308 . . . . . 6 (𝑚 LMHom 𝑚) ∈ V
85, 7eqeltrrdi 2848 . . . . 5 (𝑚 = 𝑀𝐵 ∈ V)
9 simpr 485 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑏 = 𝐵)
109opeq2d 4811 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 fveq2 6774 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
1211ofeqd 7535 . . . . . . . . . . 11 (𝑚 = 𝑀 → ∘f (+g𝑚) = ∘f (+g𝑀))
1312oveqdr 7303 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥f (+g𝑚)𝑦) = (𝑥f (+g𝑀)𝑦))
149, 9, 13mpoeq123dv 7350 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)))
15 mendval.p . . . . . . . . 9 + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
1614, 15eqtr4di 2796 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦)) = + )
1716opeq2d 4811 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩ = ⟨(+g‘ndx), + ⟩)
18 eqidd 2739 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑦) = (𝑥𝑦))
199, 9, 18mpoeq123dv 7350 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
20 mendval.t . . . . . . . . 9 × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
2119, 20eqtr4di 2796 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = × )
2221opeq2d 4811 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩ = ⟨(.r‘ndx), × ⟩)
2310, 17, 22tpeq123d 4684 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
24 fveq2 6774 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
2524adantr 481 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = (Scalar‘𝑀))
26 mendval.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
2725, 26eqtr4di 2796 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = 𝑆)
2827opeq2d 4811 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Scalar‘ndx), (Scalar‘𝑚)⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
2927fveq2d 6778 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘(Scalar‘𝑚)) = (Base‘𝑆))
30 fveq2 6774 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
3130adantr 481 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → ( ·𝑠𝑚) = ( ·𝑠𝑀))
3231ofeqd 7535 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ∘f ( ·𝑠𝑚) = ∘f ( ·𝑠𝑀))
33 fveq2 6774 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3433adantr 481 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘𝑚) = (Base‘𝑀))
3534xpeq1d 5618 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ((Base‘𝑚) × {𝑥}) = ((Base‘𝑀) × {𝑥}))
36 eqidd 2739 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑦 = 𝑦)
3732, 35, 36oveq123d 7296 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
3829, 9, 37mpoeq123dv 7350 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)))
39 mendval.v . . . . . . . . 9 · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
4038, 39eqtr4di 2796 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦)) = · )
4140opeq2d 4811 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
4228, 41preq12d 4677 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
4323, 42uneq12d 4098 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
448, 43csbied 3870 . . . 4 (𝑚 = 𝑀𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
456, 44eqtrd 2778 . . 3 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
46 df-mend 41001 . . 3 MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
47 tpex 7597 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
48 prex 5355 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩} ∈ V
4947, 48unex 7596 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) ∈ V
5045, 46, 49fvmpt 6875 . 2 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
511, 50syl 17 1 (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832  cun 3885  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   × cxp 5587  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966   LMHom clmhm 20281  MEndocmend 41000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-mend 41001
This theorem is referenced by:  mendbas  41009  mendplusgfval  41010  mendmulrfval  41012  mendsca  41014  mendvscafval  41015
  Copyright terms: Public domain W3C validator