Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   GIF version

Theorem mendval 38430
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b 𝐵 = (𝑀 LMHom 𝑀)
mendval.p + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
mendval.t × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
mendval.s 𝑆 = (Scalar‘𝑀)
mendval.v · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
mendval (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mendval
Dummy variables 𝑚 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3365 . 2 (𝑀𝑋𝑀 ∈ V)
2 oveq12 6851 . . . . . . 7 ((𝑚 = 𝑀𝑚 = 𝑀) → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
32anidms 562 . . . . . 6 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
4 mendval.b . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
53, 4syl6eqr 2817 . . . . 5 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = 𝐵)
65csbeq1d 3698 . . . 4 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}))
7 ovex 6874 . . . . . 6 (𝑚 LMHom 𝑚) ∈ V
85, 7syl6eqelr 2853 . . . . 5 (𝑚 = 𝑀𝐵 ∈ V)
9 simpr 477 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑏 = 𝐵)
109opeq2d 4566 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 fveq2 6375 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
12 ofeq 7097 . . . . . . . . . . . 12 ((+g𝑚) = (+g𝑀) → ∘𝑓 (+g𝑚) = ∘𝑓 (+g𝑀))
1311, 12syl 17 . . . . . . . . . . 11 (𝑚 = 𝑀 → ∘𝑓 (+g𝑚) = ∘𝑓 (+g𝑀))
1413oveqdr 6870 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑓 (+g𝑚)𝑦) = (𝑥𝑓 (+g𝑀)𝑦))
159, 9, 14mpt2eq123dv 6915 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦)))
16 mendval.p . . . . . . . . 9 + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑓 (+g𝑀)𝑦))
1715, 16syl6eqr 2817 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦)) = + )
1817opeq2d 4566 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩ = ⟨(+g‘ndx), + ⟩)
19 eqidd 2766 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑦) = (𝑥𝑦))
209, 9, 19mpt2eq123dv 6915 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
21 mendval.t . . . . . . . . 9 × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
2220, 21syl6eqr 2817 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = × )
2322opeq2d 4566 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩ = ⟨(.r‘ndx), × ⟩)
2410, 18, 23tpeq123d 4438 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
25 fveq2 6375 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
2625adantr 472 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = (Scalar‘𝑀))
27 mendval.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
2826, 27syl6eqr 2817 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = 𝑆)
2928opeq2d 4566 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Scalar‘ndx), (Scalar‘𝑚)⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
3028fveq2d 6379 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘(Scalar‘𝑚)) = (Base‘𝑆))
31 fveq2 6375 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
3231adantr 472 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → ( ·𝑠𝑚) = ( ·𝑠𝑀))
33 ofeq 7097 . . . . . . . . . . . 12 (( ·𝑠𝑚) = ( ·𝑠𝑀) → ∘𝑓 ( ·𝑠𝑚) = ∘𝑓 ( ·𝑠𝑀))
3432, 33syl 17 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ∘𝑓 ( ·𝑠𝑚) = ∘𝑓 ( ·𝑠𝑀))
35 fveq2 6375 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3635adantr 472 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘𝑚) = (Base‘𝑀))
3736xpeq1d 5306 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ((Base‘𝑚) × {𝑥}) = ((Base‘𝑀) × {𝑥}))
38 eqidd 2766 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑦 = 𝑦)
3934, 37, 38oveq123d 6863 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
4030, 9, 39mpt2eq123dv 6915 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦)))
41 mendval.v . . . . . . . . 9 · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
4240, 41syl6eqr 2817 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦)) = · )
4342opeq2d 4566 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
4429, 43preq12d 4431 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
4524, 44uneq12d 3930 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
468, 45csbied 3718 . . . 4 (𝑚 = 𝑀𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
476, 46eqtrd 2799 . . 3 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
48 df-mend 38423 . . 3 MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑓 (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘𝑓 ( ·𝑠𝑚)𝑦))⟩}))
49 tpex 7155 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
50 prex 5065 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩} ∈ V
5149, 50unex 7154 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) ∈ V
5247, 48, 51fvmpt 6471 . 2 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
531, 52syl 17 1 (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  csb 3691  cun 3730  {csn 4334  {cpr 4336  {ctp 4338  cop 4340   × cxp 5275  ccom 5281  cfv 6068  (class class class)co 6842  cmpt2 6844  𝑓 cof 7093  ndxcnx 16127  Basecbs 16130  +gcplusg 16214  .rcmulr 16215  Scalarcsca 16217   ·𝑠 cvsca 16218   LMHom clmhm 19291  MEndocmend 38422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-iota 6031  df-fun 6070  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-mend 38423
This theorem is referenced by:  mendbas  38431  mendplusgfval  38432  mendmulrfval  38434  mendsca  38436  mendvscafval  38437
  Copyright terms: Public domain W3C validator