Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   GIF version

Theorem mendval 40127
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b 𝐵 = (𝑀 LMHom 𝑀)
mendval.p + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
mendval.t × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
mendval.s 𝑆 = (Scalar‘𝑀)
mendval.v · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
mendval (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑀,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mendval
Dummy variables 𝑚 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝑀𝑋𝑀 ∈ V)
2 oveq12 7144 . . . . . . 7 ((𝑚 = 𝑀𝑚 = 𝑀) → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
32anidms 570 . . . . . 6 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = (𝑀 LMHom 𝑀))
4 mendval.b . . . . . 6 𝐵 = (𝑀 LMHom 𝑀)
53, 4eqtr4di 2851 . . . . 5 (𝑚 = 𝑀 → (𝑚 LMHom 𝑚) = 𝐵)
65csbeq1d 3832 . . . 4 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
7 ovex 7168 . . . . . 6 (𝑚 LMHom 𝑚) ∈ V
85, 7eqeltrrdi 2899 . . . . 5 (𝑚 = 𝑀𝐵 ∈ V)
9 simpr 488 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑏 = 𝐵)
109opeq2d 4772 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 fveq2 6645 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
12 ofeq 7391 . . . . . . . . . . . 12 ((+g𝑚) = (+g𝑀) → ∘f (+g𝑚) = ∘f (+g𝑀))
1311, 12syl 17 . . . . . . . . . . 11 (𝑚 = 𝑀 → ∘f (+g𝑚) = ∘f (+g𝑀))
1413oveqdr 7163 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥f (+g𝑚)𝑦) = (𝑥f (+g𝑀)𝑦))
159, 9, 14mpoeq123dv 7208 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦)))
16 mendval.p . . . . . . . . 9 + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥f (+g𝑀)𝑦))
1715, 16eqtr4di 2851 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦)) = + )
1817opeq2d 4772 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩ = ⟨(+g‘ndx), + ⟩)
19 eqidd 2799 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑦) = (𝑥𝑦))
209, 9, 19mpoeq123dv 7208 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦)))
21 mendval.t . . . . . . . . 9 × = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝑦))
2220, 21eqtr4di 2851 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦)) = × )
2322opeq2d 4772 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩ = ⟨(.r‘ndx), × ⟩)
2410, 18, 23tpeq123d 4644 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩})
25 fveq2 6645 . . . . . . . . . 10 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
2625adantr 484 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = (Scalar‘𝑀))
27 mendval.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
2826, 27eqtr4di 2851 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (Scalar‘𝑚) = 𝑆)
2928opeq2d 4772 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨(Scalar‘ndx), (Scalar‘𝑚)⟩ = ⟨(Scalar‘ndx), 𝑆⟩)
3028fveq2d 6649 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘(Scalar‘𝑚)) = (Base‘𝑆))
31 fveq2 6645 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ( ·𝑠𝑚) = ( ·𝑠𝑀))
3231adantr 484 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → ( ·𝑠𝑚) = ( ·𝑠𝑀))
33 ofeq 7391 . . . . . . . . . . . 12 (( ·𝑠𝑚) = ( ·𝑠𝑀) → ∘f ( ·𝑠𝑚) = ∘f ( ·𝑠𝑀))
3432, 33syl 17 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ∘f ( ·𝑠𝑚) = ∘f ( ·𝑠𝑀))
35 fveq2 6645 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3635adantr 484 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑏 = 𝐵) → (Base‘𝑚) = (Base‘𝑀))
3736xpeq1d 5548 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → ((Base‘𝑚) × {𝑥}) = ((Base‘𝑀) × {𝑥}))
38 eqidd 2799 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑏 = 𝐵) → 𝑦 = 𝑦)
3934, 37, 38oveq123d 7156 . . . . . . . . . 10 ((𝑚 = 𝑀𝑏 = 𝐵) → (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
4030, 9, 39mpoeq123dv 7208 . . . . . . . . 9 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦)) = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)))
41 mendval.v . . . . . . . . 9 · = (𝑥 ∈ (Base‘𝑆), 𝑦𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
4240, 41eqtr4di 2851 . . . . . . . 8 ((𝑚 = 𝑀𝑏 = 𝐵) → (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦)) = · )
4342opeq2d 4772 . . . . . . 7 ((𝑚 = 𝑀𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
4429, 43preq12d 4637 . . . . . 6 ((𝑚 = 𝑀𝑏 = 𝐵) → {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩} = {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
4524, 44uneq12d 4091 . . . . 5 ((𝑚 = 𝑀𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
468, 45csbied 3864 . . . 4 (𝑚 = 𝑀𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
476, 46eqtrd 2833 . . 3 (𝑚 = 𝑀(𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
48 df-mend 40120 . . 3 MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
49 tpex 7450 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∈ V
50 prex 5298 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩} ∈ V
5149, 50unex 7449 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) ∈ V
5247, 48, 51fvmpt 6745 . 2 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
531, 52syl 17 1 (𝑀𝑋 → (MEndo‘𝑀) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  csb 3828  cun 3879  {csn 4525  {cpr 4527  {ctp 4529  cop 4531   × cxp 5517  ccom 5523  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387  ndxcnx 16472  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561   LMHom clmhm 19784  MEndocmend 40119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-mend 40120
This theorem is referenced by:  mendbas  40128  mendplusgfval  40129  mendmulrfval  40131  mendsca  40133  mendvscafval  40134
  Copyright terms: Public domain W3C validator