Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendval Structured version   Visualization version   GIF version

Theorem mendval 41910
Description: Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mendval.b 𝐡 = (𝑀 LMHom 𝑀)
mendval.p + = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
mendval.t Γ— = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
mendval.s 𝑆 = (Scalarβ€˜π‘€)
mendval.v Β· = (π‘₯ ∈ (Baseβ€˜π‘†), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
Assertion
Ref Expression
mendval (𝑀 ∈ 𝑋 β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝑀,𝑦
Allowed substitution hints:   + (π‘₯,𝑦)   𝑆(π‘₯,𝑦)   Β· (π‘₯,𝑦)   Γ— (π‘₯,𝑦)   𝑋(π‘₯,𝑦)

Proof of Theorem mendval
Dummy variables π‘š 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑀 ∈ 𝑋 β†’ 𝑀 ∈ V)
2 oveq12 7414 . . . . . . 7 ((π‘š = 𝑀 ∧ π‘š = 𝑀) β†’ (π‘š LMHom π‘š) = (𝑀 LMHom 𝑀))
32anidms 567 . . . . . 6 (π‘š = 𝑀 β†’ (π‘š LMHom π‘š) = (𝑀 LMHom 𝑀))
4 mendval.b . . . . . 6 𝐡 = (𝑀 LMHom 𝑀)
53, 4eqtr4di 2790 . . . . 5 (π‘š = 𝑀 β†’ (π‘š LMHom π‘š) = 𝐡)
65csbeq1d 3896 . . . 4 (π‘š = 𝑀 β†’ ⦋(π‘š LMHom π‘š) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}) = ⦋𝐡 / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}))
7 ovex 7438 . . . . . 6 (π‘š LMHom π‘š) ∈ V
85, 7eqeltrrdi 2842 . . . . 5 (π‘š = 𝑀 β†’ 𝐡 ∈ V)
9 simpr 485 . . . . . . . 8 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ 𝑏 = 𝐡)
109opeq2d 4879 . . . . . . 7 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ⟨(Baseβ€˜ndx), π‘βŸ© = ⟨(Baseβ€˜ndx), 𝐡⟩)
11 fveq2 6888 . . . . . . . . . . . 12 (π‘š = 𝑀 β†’ (+gβ€˜π‘š) = (+gβ€˜π‘€))
1211ofeqd 7668 . . . . . . . . . . 11 (π‘š = 𝑀 β†’ ∘f (+gβ€˜π‘š) = ∘f (+gβ€˜π‘€))
1312oveqdr 7433 . . . . . . . . . 10 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∘f (+gβ€˜π‘š)𝑦) = (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
149, 9, 13mpoeq123dv 7480 . . . . . . . . 9 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦)))
15 mendval.p . . . . . . . . 9 + = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
1614, 15eqtr4di 2790 . . . . . . . 8 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦)) = + )
1716opeq2d 4879 . . . . . . 7 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩ = ⟨(+gβ€˜ndx), + ⟩)
18 eqidd 2733 . . . . . . . . . 10 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∘ 𝑦) = (π‘₯ ∘ 𝑦))
199, 9, 18mpoeq123dv 7480 . . . . . . . . 9 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦)) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦)))
20 mendval.t . . . . . . . . 9 Γ— = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
2119, 20eqtr4di 2790 . . . . . . . 8 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦)) = Γ— )
2221opeq2d 4879 . . . . . . 7 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩ = ⟨(.rβ€˜ndx), Γ— ⟩)
2310, 17, 22tpeq123d 4751 . . . . . 6 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ {⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩})
24 fveq2 6888 . . . . . . . . . 10 (π‘š = 𝑀 β†’ (Scalarβ€˜π‘š) = (Scalarβ€˜π‘€))
2524adantr 481 . . . . . . . . 9 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (Scalarβ€˜π‘š) = (Scalarβ€˜π‘€))
26 mendval.s . . . . . . . . 9 𝑆 = (Scalarβ€˜π‘€)
2725, 26eqtr4di 2790 . . . . . . . 8 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (Scalarβ€˜π‘š) = 𝑆)
2827opeq2d 4879 . . . . . . 7 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩ = ⟨(Scalarβ€˜ndx), π‘†βŸ©)
2927fveq2d 6892 . . . . . . . . . 10 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (Baseβ€˜(Scalarβ€˜π‘š)) = (Baseβ€˜π‘†))
30 fveq2 6888 . . . . . . . . . . . . 13 (π‘š = 𝑀 β†’ ( ·𝑠 β€˜π‘š) = ( ·𝑠 β€˜π‘€))
3130adantr 481 . . . . . . . . . . . 12 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ( ·𝑠 β€˜π‘š) = ( ·𝑠 β€˜π‘€))
3231ofeqd 7668 . . . . . . . . . . 11 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ∘f ( ·𝑠 β€˜π‘š) = ∘f ( ·𝑠 β€˜π‘€))
33 fveq2 6888 . . . . . . . . . . . . 13 (π‘š = 𝑀 β†’ (Baseβ€˜π‘š) = (Baseβ€˜π‘€))
3433adantr 481 . . . . . . . . . . . 12 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (Baseβ€˜π‘š) = (Baseβ€˜π‘€))
3534xpeq1d 5704 . . . . . . . . . . 11 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ((Baseβ€˜π‘š) Γ— {π‘₯}) = ((Baseβ€˜π‘€) Γ— {π‘₯}))
36 eqidd 2733 . . . . . . . . . . 11 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ 𝑦 = 𝑦)
3732, 35, 36oveq123d 7426 . . . . . . . . . 10 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
3829, 9, 37mpoeq123dv 7480 . . . . . . . . 9 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦)) = (π‘₯ ∈ (Baseβ€˜π‘†), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦)))
39 mendval.v . . . . . . . . 9 Β· = (π‘₯ ∈ (Baseβ€˜π‘†), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
4038, 39eqtr4di 2790 . . . . . . . 8 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦)) = Β· )
4140opeq2d 4879 . . . . . . 7 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩ = ⟨( ·𝑠 β€˜ndx), Β· ⟩)
4228, 41preq12d 4744 . . . . . 6 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩} = {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})
4323, 42uneq12d 4163 . . . . 5 ((π‘š = 𝑀 ∧ 𝑏 = 𝐡) β†’ ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
448, 43csbied 3930 . . . 4 (π‘š = 𝑀 β†’ ⦋𝐡 / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
456, 44eqtrd 2772 . . 3 (π‘š = 𝑀 β†’ ⦋(π‘š LMHom π‘š) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
46 df-mend 41903 . . 3 MEndo = (π‘š ∈ V ↦ ⦋(π‘š LMHom π‘š) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}))
47 tpex 7730 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} ∈ V
48 prex 5431 . . . 4 {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩} ∈ V
4947, 48unex 7729 . . 3 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}) ∈ V
5045, 46, 49fvmpt 6995 . 2 (𝑀 ∈ V β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
511, 50syl 17 1 (𝑀 ∈ 𝑋 β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  β¦‹csb 3892   βˆͺ cun 3945  {csn 4627  {cpr 4629  {ctp 4631  βŸ¨cop 4633   Γ— cxp 5673   ∘ ccom 5679  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   ∘f cof 7664  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197   LMHom clmhm 20622  MEndocmend 41902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-mend 41903
This theorem is referenced by:  mendbas  41911  mendplusgfval  41912  mendmulrfval  41914  mendsca  41916  mendvscafval  41917
  Copyright terms: Public domain W3C validator