| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algstr | Structured version Visualization version GIF version | ||
| Description: Lemma to shorten proofs of algbase 43131 through algvsca 43135. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| algpart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) |
| Ref | Expression |
|---|---|
| algstr | ⊢ 𝐴 Struct 〈1, 6〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algpart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
| 2 | eqid 2734 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
| 3 | 2 | rngstr 17319 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉 |
| 4 | 5nn 12335 | . . . 4 ⊢ 5 ∈ ℕ | |
| 5 | scandx 17335 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 6 | 5lt6 12430 | . . . 4 ⊢ 5 < 6 | |
| 7 | 6nn 12338 | . . . 4 ⊢ 6 ∈ ℕ | |
| 8 | vscandx 17340 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 9 | 4, 5, 6, 7, 8 | strle2 17179 | . . 3 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉} Struct 〈5, 6〉 |
| 10 | 3lt5 12427 | . . 3 ⊢ 3 < 5 | |
| 11 | 3, 9, 10 | strleun 17177 | . 2 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) Struct 〈1, 6〉 |
| 12 | 1, 11 | eqbrtri 5146 | 1 ⊢ 𝐴 Struct 〈1, 6〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3931 {cpr 4610 {ctp 4612 〈cop 4614 class class class wbr 5125 ‘cfv 6542 1c1 11139 3c3 12305 5c5 12307 6c6 12308 Struct cstr 17166 ndxcnx 17213 Basecbs 17230 +gcplusg 17277 .rcmulr 17278 Scalarcsca 17280 ·𝑠 cvsca 17281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 |
| This theorem is referenced by: algbase 43131 algaddg 43132 algmulr 43133 algsca 43134 algvsca 43135 |
| Copyright terms: Public domain | W3C validator |