HomeHome Metamath Proof Explorer
Theorem List (p. 423 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30880)
  Hilbert Space Explorer  Hilbert Space Explorer
(30881-32403)
  Users' Mathboxes  Users' Mathboxes
(32404-49778)
 

Theorem List for Metamath Proof Explorer - 42201-42300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempsspwb 42201 Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)
 
Theoremxppss12 42202 Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))
 
Theoremelpwbi 42203 Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.)
𝐵 ∈ V       (𝐴𝐵𝐴 ∈ 𝒫 𝐵)
 
Theoremimaopab 42204* The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 
Theoremeqresfnbd 42205 Property of being the restriction of a function. Note that this is closer to funssres 6530 than fnssres 6609. (Contributed by SN, 11-Mar-2025.)
(𝜑𝐹 Fn 𝐵)    &   (𝜑𝐴𝐵)       (𝜑 → (𝑅 = (𝐹𝐴) ↔ (𝑅 Fn 𝐴𝑅𝐹)))
 
Theoremf1o2d2 42206* Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by SN, 11-Mar-2025.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝐷)    &   ((𝜑𝑧𝐷) → 𝐼𝐴)    &   ((𝜑𝑧𝐷) → 𝐽𝐵)    &   ((𝜑 ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐷)) → ((𝑥 = 𝐼𝑦 = 𝐽) ↔ 𝑧 = 𝐶))       (𝜑𝐹:(𝐴 × 𝐵)–1-1-onto𝐷)
 
Theoremfmpocos 42207* Composition of two functions. Variation of fmpoco 8035 with more context in the substitution hypothesis for 𝑇. (Contributed by SN, 14-Mar-2025.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)    &   (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))    &   (𝜑𝐺 = (𝑧𝐶𝑆))    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅 / 𝑧𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
 
Theoremovmpogad 42208* Value of an operation given by a maps-to rule. Deduction form of ovmpoga 7507. (Contributed by SN, 14-Mar-2025.)
𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)    &   ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑𝑆𝑉)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremofun 42209 A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024.)
(𝜑𝐴 Fn 𝑀)    &   (𝜑𝐵 Fn 𝑀)    &   (𝜑𝐶 Fn 𝑁)    &   (𝜑𝐷 Fn 𝑁)    &   (𝜑𝑀𝑉)    &   (𝜑𝑁𝑊)    &   (𝜑 → (𝑀𝑁) = ∅)       (𝜑 → ((𝐴𝐶) ∘f 𝑅(𝐵𝐷)) = ((𝐴f 𝑅𝐵) ∪ (𝐶f 𝑅𝐷)))
 
Theoremdfqs2 42210* Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
(𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
 
Theoremdfqs3 42211* Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
(𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
 
Theoremqseq12d 42212 Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))
 
Theoremqsalrel 42213* The quotient set is equal to the singleton of 𝐴 when all elements are related and 𝐴 is nonempty. (Contributed by SN, 8-Jun-2023.)
((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)    &   (𝜑 Er 𝐴)    &   (𝜑𝑁𝐴)       (𝜑 → (𝐴 / ) = {𝐴})
 
Theoremelmapssresd 42214 A restricted mapping is a mapping. EDITORIAL: Could be used to shorten elpm2r 8779 with some reordering involving mapsspm 8810. (Contributed by SN, 11-Mar-2025.)
(𝜑𝐴 ∈ (𝐵m 𝐶))    &   (𝜑𝐷𝐶)       (𝜑 → (𝐴𝐷) ∈ (𝐵m 𝐷))
 
Theoremsupinf 42215* The supremum is the infimum of the upper bounds. (Contributed by SN, 29-Jun-2025.)
(𝜑< Or 𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))       (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ))
 
Theoremmapcod 42216 Compose two mappings. (Contributed by SN, 11-Mar-2025.)
(𝜑𝐹 ∈ (𝐴m 𝐵))    &   (𝜑𝐺 ∈ (𝐵m 𝐶))       (𝜑 → (𝐹𝐺) ∈ (𝐴m 𝐶))
 
Theoremfisdomnn 42217 A finite set is dominated by the set of natural numbers. (Contributed by SN, 6-Jul-2025.)
(𝐴 ∈ Fin → 𝐴 ≺ ℕ)
 
Theoremltex 42218 The less-than relation is a set. (Contributed by SN, 5-Jun-2025.)
< ∈ V
 
Theoremleex 42219 The less-than-or-equal-to relation is a set. (Contributed by SN, 5-Jun-2025.)
≤ ∈ V
 
Theoremsubex 42220 The subtraction operation is a set. (Contributed by SN, 5-Jun-2025.)
− ∈ V
 
Theoremabsex 42221 The absolute value function is a set. (Contributed by SN, 5-Jun-2025.)
abs ∈ V
 
Theoremcjex 42222 The conjugate function is a set. (Contributed by SN, 5-Jun-2025.)
∗ ∈ V
 
Theoremfzosumm1 42223* Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023.)
(𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 − 1) → 𝐴 = 𝐵)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵))
 
Theoremccatcan2d 42224 Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.)
(𝜑𝐴 ∈ Word 𝑉)    &   (𝜑𝐵 ∈ Word 𝑉)    &   (𝜑𝐶 ∈ Word 𝑉)       (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
 
21.30.2  Arithmetic theorems

Towards the start of this section are several proofs regarding the different complex number axioms that could be used to prove some results.

For example, ax-1rid 11098 is used in mulrid 11132 related theorems, so one could trade off the extra axioms in mulrid 11132 for the axioms needed to prove that something is a real number. Another example is avoiding complex number closure laws by using real number closure laws and then using ax-resscn 11085; in the other direction, real number closure laws can be avoided by using ax-resscn 11085 and then the complex number closure laws. (This only works if the result of (𝐴 + 𝐵) only needs to be a complex number).

The natural numbers are especially amenable to axiom reductions, as the set is the recursive set {1, (1 + 1), ((1 + 1) + 1)}, etc., i.e. the set of numbers formed by only additions of 1. The digits 2 through 9 are defined so that they expand into additions of 1. This conveniently allows for adding natural numbers by rearranging parentheses, as shown below:

(4 + 3) = 7

((3 + 1) + (2 + 1)) = (6 + 1)

((((1 + 1) + 1) + 1) + ((1 + 1) + 1)) =

((((((1 + 1) + 1) + 1) + 1) + 1) + 1)

This only requires ax-addass 11093, ax-1cn 11086, and ax-addcl 11088. (And in practice, the expression isn't fully expanded into ones.)

Multiplication by 1 requires either mullidi 11139 or (ax-1rid 11098 and 1re 11134) as seen in 1t1e1 12303 and 1t1e1ALT 42228. Multiplying with greater natural numbers uses ax-distr 11095. Still, this takes fewer axioms than adding zero, which is often implicit in theorems such as (9 + 1) = 10. Adding zero uses almost every complex number axiom, though notably not ax-mulcom 11092 (see readdrid 42383 and readdlid 42376).

 
Theoremc0exALT 42225 Alternate proof of c0ex 11128 using more set theory axioms but fewer complex number axioms (add ax-10 2142, ax-11 2158, ax-13 2370, ax-nul 5248, and remove ax-1cn 11086, ax-icn 11087, ax-addcl 11088, and ax-mulcl 11090). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ V
 
Theorem0cnALT3 42226 Alternate proof of 0cn 11126 using ax-resscn 11085, ax-addrcl 11089, ax-rnegex 11099, ax-cnre 11101 instead of ax-icn 11087, ax-addcl 11088, ax-mulcl 11090, ax-i2m1 11096. Version of 0cnALT 11369 using ax-1cn 11086 instead of ax-icn 11087. (Contributed by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
0 ∈ ℂ
 
Theoremelre0re 42227 Specialized version of 0red 11137 without using ax-1cn 11086 and ax-cnre 11101. (Contributed by Steven Nguyen, 28-Jan-2023.)
(𝐴 ∈ ℝ → 0 ∈ ℝ)
 
Theorem1t1e1ALT 42228 Alternate proof of 1t1e1 12303 using a different set of axioms (add ax-mulrcl 11091, ax-i2m1 11096, ax-1ne0 11097, ax-rrecex 11100 and remove ax-resscn 11085, ax-mulcom 11092, ax-mulass 11094, ax-distr 11095). (Contributed by Steven Nguyen, 20-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(1 · 1) = 1
 
Theoremlttrii 42229 'Less than' is transitive. (Contributed by SN, 26-Aug-2025.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ    &   𝐴 < 𝐵    &   𝐵 < 𝐶       𝐴 < 𝐶
 
Theoremremulcan2d 42230 mulcan2d 11772 for real numbers using fewer axioms. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 ≠ 0)       (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremreaddridaddlidd 42231 Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11308, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (𝐵 + 𝐴) = 𝐵)       ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
 
Theorem1p3e4 42232 1 + 3 = 4. (Contributed by SN, 19-Nov-2025.)
(1 + 3) = 4
 
Theorem5ne0 42233 The number 5 is nonzero. (Contributed by SN, 22-Oct-2025.)
5 ≠ 0
 
Theorem6ne0 42234 The number 6 is nonzero. (Contributed by SN, 22-Oct-2025.)
6 ≠ 0
 
Theorem7ne0 42235 The number 7 is nonzero. (Contributed by SN, 22-Oct-2025.)
7 ≠ 0
 
Theorem8ne0 42236 The number 8 is nonzero. (Contributed by SN, 22-Oct-2025.)
8 ≠ 0
 
Theorem9ne0 42237 The number 9 is nonzero. (Contributed by SN, 22-Oct-2025.)
9 ≠ 0
 
Theoremsn-1ne2 42238 A proof of 1ne2 12349 without using ax-mulcom 11092, ax-mulass 11094, ax-pre-mulgt0 11105. Based on mul02lem2 11311. (Contributed by SN, 13-Dec-2023.)
1 ≠ 2
 
Theoremnnn1suc 42239* A positive integer that is not 1 is a successor of some other positive integer. (Contributed by Steven Nguyen, 19-Aug-2023.)
((𝐴 ∈ ℕ ∧ 𝐴 ≠ 1) → ∃𝑥 ∈ ℕ (𝑥 + 1) = 𝐴)
 
Theoremnnadd1com 42240 Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
(𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
 
Theoremnnaddcom 42241 Addition is commutative for natural numbers. Uses fewer axioms than addcom 11320. (Contributed by Steven Nguyen, 9-Dec-2022.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremnnaddcomli 42242 Version of addcomli 11326 for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ    &   (𝐴 + 𝐵) = 𝐶       (𝐵 + 𝐴) = 𝐶
 
Theoremnnadddir 42243 Right-distributivity for natural numbers without ax-mulcom 11092. (Contributed by SN, 5-Feb-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
 
Theoremnnmul1com 42244 Multiplication with 1 is commutative for natural numbers, without ax-mulcom 11092. Since (𝐴 · 1) is 𝐴 by ax-1rid 11098, this is equivalent to remullid 42407 for natural numbers, but using fewer axioms (avoiding ax-resscn 11085, ax-addass 11093, ax-mulass 11094, ax-rnegex 11099, ax-pre-lttri 11102, ax-pre-lttrn 11103, ax-pre-ltadd 11104). (Contributed by SN, 5-Feb-2024.)
(𝐴 ∈ ℕ → (1 · 𝐴) = (𝐴 · 1))
 
Theoremnnmulcom 42245 Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 
Theoremreaddrcl2d 42246 Reverse closure for addition: the second addend is real if the first addend is real and the sum is real. (Contributed by SN, 25-Apr-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐵) ∈ ℝ)       (𝜑𝐵 ∈ ℝ)
 
Theoremmvrrsubd 42247 Move a subtraction in the RHS to a right-addition in the LHS. Converse of mvlraddd 11548.

EDITORIAL: Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024.)

(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵𝐶))       (𝜑 → (𝐴 + 𝐶) = 𝐵)
 
Theoremladdrotrd 42248 Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd 11549 with a commuted consequent, and of mvrladdd 11551 with a commuted hypothesis.

EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: ply1dg3rt0irred 33527. (Contributed by SN, 21-Aug-2024.)

(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 + 𝐵) = 𝐶)       (𝜑 → (𝐶𝐴) = 𝐵)
 
Theoremraddswap12d 42249 Swap the first two variables in an equation with addition on the right, converting it into a subtraction. Version of mvrraddd 11550 with a commuted consequent, and of mvlraddd 11548 with a commuted hypothesis.

EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024.)

(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵 + 𝐶))       (𝜑𝐵 = (𝐴𝐶))
 
Theoremlsubrotld 42250 Rotate the variables left in an equation with subtraction on the left, converting it into an addition.

EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 21-Aug-2024.)

(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) = 𝐶)       (𝜑 → (𝐵 + 𝐶) = 𝐴)
 
Theoremrsubrotld 42251 Rotate the variables left in an equation with subtraction on the right, converting it into an addition.

EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 4-Jul-2025.)

(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵𝐶))       (𝜑𝐵 = (𝐶 + 𝐴))
 
Theoremlsubswap23d 42252 Swap the second and third variables in an equation with subtraction on the left, converting it into an addition.

EDITORIAL: The label for this theorem is questionable. Do not move until it would have 7 uses: current additional uses: (none). (Contributed by SN, 23-Aug-2024.)

(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴𝐵) = 𝐶)       (𝜑 → (𝐴𝐶) = 𝐵)
 
Theoremaddsubeq4com 42253 Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴𝐶) = (𝐷𝐵)))
 
Theoremsqsumi 42254 A sum squared. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((𝐴 + 𝐵) · (𝐴 + 𝐵)) = (((𝐴 · 𝐴) + (𝐵 · 𝐵)) + (2 · (𝐴 · 𝐵)))
 
Theoremnegn0nposznnd 42255 Lemma for dffltz 42607. (Contributed by Steven Nguyen, 27-Feb-2023.)
(𝜑𝐴 ≠ 0)    &   (𝜑 → ¬ 0 < 𝐴)    &   (𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℕ)
 
Theoremsqmid3api 42256 Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022.)
𝐴 ∈ ℂ    &   𝑁 ∈ ℂ    &   (𝐴 + 𝑁) = 𝐵    &   (𝐵 + 𝑁) = 𝐶       (𝐵 · 𝐵) = ((𝐴 · 𝐶) + (𝑁 · 𝑁))
 
Theoremdecaddcom 42257 Commute ones place in addition. (Contributed by Steven Nguyen, 29-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0       (𝐴𝐵 + 𝐶) = (𝐴𝐶 + 𝐵)
 
Theoremsqn5i 42258 The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℕ0       (𝐴5 · 𝐴5) = (𝐴 · (𝐴 + 1))25
 
Theoremsqn5ii 42259 The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   (𝐴 · 𝐵) = 𝐶       (𝐴5 · 𝐴5) = 𝐶25
 
Theoremdecpmulnc 42260 Partial products algorithm for two digit multiplication, no carry. Compare muladdi 11589. (Contributed by Steven Nguyen, 9-Dec-2022.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝐶) = 𝐸    &   ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹    &   (𝐵 · 𝐷) = 𝐺       (𝐴𝐵 · 𝐶𝐷) = 𝐸𝐹𝐺
 
Theoremdecpmul 42261 Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝐶) = 𝐸    &   ((𝐴 · 𝐷) + (𝐵 · 𝐶)) = 𝐹    &   (𝐵 · 𝐷) = 𝐺𝐻    &   (𝐸𝐺 + 𝐹) = 𝐼    &   𝐺 ∈ ℕ0    &   𝐻 ∈ ℕ0       (𝐴𝐵 · 𝐶𝐷) = 𝐼𝐻
 
Theoremsqdeccom12 42262 The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝐴𝐵 · 𝐴𝐵) − (𝐵𝐴 · 𝐵𝐴)) = (99 · ((𝐴 · 𝐴) − (𝐵 · 𝐵)))
 
Theoremsq3deccom12 42263 Variant of sqdeccom12 42262 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   (𝐴 + 𝐶) = 𝐷       ((𝐴𝐵𝐶 · 𝐴𝐵𝐶) − (𝐷𝐵 · 𝐷𝐵)) = (99 · ((𝐴𝐵 · 𝐴𝐵) − (𝐶 · 𝐶)))
 
Theorem4t5e20 42264 4 times 5 equals 20. (Contributed by SN, 30-Mar-2025.)
(4 · 5) = 20
 
Theorem3rdpwhole 42265 A third of a number plus the number is four thirds of the number. (Contributed by SN, 19-Nov-2025.)
(𝐴 ∈ ℂ → ((𝐴 / 3) + 𝐴) = (4 · (𝐴 / 3)))
 
Theoremsq4 42266 The square of 4 is 16. (Contributed by SN, 26-Aug-2025.)
(4↑2) = 16
 
Theoremsq5 42267 The square of 5 is 25. (Contributed by SN, 26-Aug-2025.)
(5↑2) = 25
 
Theoremsq6 42268 The square of 6 is 36. (Contributed by SN, 26-Aug-2025.)
(6↑2) = 36
 
Theoremsq7 42269 The square of 7 is 49. (Contributed by SN, 26-Aug-2025.)
(7↑2) = 49
 
Theoremsq8 42270 The square of 8 is 64. (Contributed by SN, 26-Aug-2025.)
(8↑2) = 64
 
Theoremsq9 42271 The square of 9 is 81. (Contributed by SN, 30-Mar-2025.)
(9↑2) = 81
 
Theoremrpsscn 42272 The positive reals are a subset of the complex numbers. (Contributed by SN, 1-Oct-2025.)
+ ⊆ ℂ
 
Theorem4rp 42273 4 is a positive real. (Contributed by SN, 26-Aug-2025.)
4 ∈ ℝ+
 
Theorem6rp 42274 6 is a positive real. (Contributed by SN, 26-Aug-2025.)
6 ∈ ℝ+
 
Theorem7rp 42275 7 is a positive real. (Contributed by SN, 26-Aug-2025.)
7 ∈ ℝ+
 
Theorem8rp 42276 8 is a positive real. (Contributed by SN, 26-Aug-2025.)
8 ∈ ℝ+
 
Theorem9rp 42277 9 is a positive real. (Contributed by SN, 26-Aug-2025.)
9 ∈ ℝ+
 
Theorem235t711 42278 Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 · 1. There isn't a higher level mulcomli 11143 saving the lower level uses of mulcomli 11143 within 235 · 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12718 are added then this proof would benefit more than ex-decpmul 42279.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12276 or 8t7e56 12729. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

(235 · 711) = 167085
 
Theoremex-decpmul 42279 Example usage of decpmul 42261. This proof is significantly longer than 235t711 42278. There is more unnecessary carrying compared to 235t711 42278. Although saving 5 visual steps, using mulcomli 11143 early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
(235 · 711) = 167085
 
Theoremeluzp1 42280 Membership in a successor upper set of integers. (Contributed by SN, 5-Jul-2025.)
(𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)))
 
Theoremsn-eluzp1l 42281 Shorter proof of eluzp1l 12780. (Contributed by NM, 12-Sep-2005.) (Revised by SN, 5-Jul-2025.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑁)
 
Theoremfz1sumconst 42282* The sum of 𝑁 constant terms (𝑘 is not free in 𝐶). (Contributed by SN, 21-Mar-2025.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ (1...𝑁)𝐶 = (𝑁 · 𝐶))
 
Theoremfz1sump1 42283* Add one more term to a sum. Special case of fsump1 15681 generalized to 𝑁 ∈ ℕ0. (Contributed by SN, 22-Mar-2025.)
(𝜑𝑁 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)       (𝜑 → Σ𝑘 ∈ (1...(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (1...𝑁)𝐴 + 𝐵))
 
Theoremoddnumth 42284* The Odd Number Theorem. The sum of the first 𝑁 odd numbers is 𝑁↑2. A corollary of arisum 15785. (Contributed by SN, 21-Mar-2025.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)((2 · 𝑘) − 1) = (𝑁↑2))
 
Theoremnicomachus 42285* Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 − 𝑁 + 1 to 𝑁↑2 + 𝑁 − 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(((𝑁↑2) − 𝑁) + ((2 · 𝑘) − 1)) = (𝑁↑3))
 
Theoremsumcubes 42286* The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
(𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)(𝑘↑3) = (Σ𝑘 ∈ (1...𝑁)𝑘↑2))
 
Theoremine1 42287 i is not 1. (Contributed by SN, 25-Apr-2025.)
i ≠ 1
 
Theorem0tie0 42288 0 times i equals 0. (Contributed by SN, 25-Apr-2025.)
(0 · i) = 0
 
Theoremit1ei 42289 i times 1 equals i. (Contributed by SN, 25-Apr-2025.)
(i · 1) = i
 
Theorem1tiei 42290 1 times i equals i. (Contributed by SN, 25-Apr-2025.)
(1 · i) = i
 
Theoremitrere 42291 i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025.)
(𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremretire 42292 A real times i is real iff the real is zero. (Contributed by SN, 25-Apr-2025.)
(𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremiocioodisjd 42293 Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)       (𝜑 → ((𝐴(,]𝐵) ∩ (𝐵(,)𝐶)) = ∅)
 
Theoremrpabsid 42294 A positive real is its own absolute value. (Contributed by SN, 1-Oct-2025.)
(𝑅 ∈ ℝ+ → (abs‘𝑅) = 𝑅)
 
21.30.3  Exponents and divisibility
 
Theoremoexpreposd 42295 Lemma for dffltz 42607. For a more standard version, see expgt0b 32774. TODO-SN?: This can be used to show exp11d 42299 holds for all integers when the exponent is odd. (Contributed by SN, 4-Mar-2023.)
(𝜑𝑁 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑 → ¬ (𝑀 / 2) ∈ ℕ)       (𝜑 → (0 < 𝑁 ↔ 0 < (𝑁𝑀)))
 
Theoremexplt1d 42296 A nonnegative real number less than one raised to a positive integer is less than one. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 < 1)       (𝜑 → (𝐴𝑁) < 1)
 
Theoremexpeq1d 42297 A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ((𝐴𝑁) = 1 ↔ 𝐴 = 1))
 
Theoremexpeqidd 42298 A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ((𝐴𝑁) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1)))
 
Theoremexp11d 42299 exp11nnd 14186 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 ≠ 0)    &   (𝜑 → (𝐴𝑁) = (𝐵𝑁))       (𝜑𝐴 = 𝐵)
 
Theorem0dvds0 42300 0 divides 0. (Contributed by SN, 15-Sep-2024.)
0 ∥ 0
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49778
  Copyright terms: Public domain < Previous  Next >