Detailed syntax breakdown of Definition df-mfitp
| Step | Hyp | Ref
| Expression |
| 1 | | cmfitp 35561 |
. 2
class
mFromItp |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | | va |
. . . . 5
setvar 𝑎 |
| 6 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
| 7 | | cmsa 35532 |
. . . . . 6
class
mSA |
| 8 | 6, 7 | cfv 6542 |
. . . . 5
class
(mSA‘𝑡) |
| 9 | | cmuv 35551 |
. . . . . . . 8
class
mUV |
| 10 | 6, 9 | cfv 6542 |
. . . . . . 7
class
(mUV‘𝑡) |
| 11 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑎 |
| 12 | | c1st 7995 |
. . . . . . . . . 10
class
1st |
| 13 | 6, 12 | cfv 6542 |
. . . . . . . . 9
class
(1st ‘𝑡) |
| 14 | 11, 13 | cfv 6542 |
. . . . . . . 8
class
((1st ‘𝑡)‘𝑎) |
| 15 | 14 | csn 4608 |
. . . . . . 7
class
{((1st ‘𝑡)‘𝑎)} |
| 16 | 10, 15 | cima 5670 |
. . . . . 6
class
((mUV‘𝑡)
“ {((1st ‘𝑡)‘𝑎)}) |
| 17 | | vi |
. . . . . . 7
setvar 𝑖 |
| 18 | | cmvrs 35415 |
. . . . . . . . 9
class
mVars |
| 19 | 6, 18 | cfv 6542 |
. . . . . . . 8
class
(mVars‘𝑡) |
| 20 | 11, 19 | cfv 6542 |
. . . . . . 7
class
((mVars‘𝑡)‘𝑎) |
| 21 | 17 | cv 1538 |
. . . . . . . . . 10
class 𝑖 |
| 22 | | cmty 35408 |
. . . . . . . . . . 11
class
mType |
| 23 | 6, 22 | cfv 6542 |
. . . . . . . . . 10
class
(mType‘𝑡) |
| 24 | 21, 23 | cfv 6542 |
. . . . . . . . 9
class
((mType‘𝑡)‘𝑖) |
| 25 | 24 | csn 4608 |
. . . . . . . 8
class
{((mType‘𝑡)‘𝑖)} |
| 26 | 10, 25 | cima 5670 |
. . . . . . 7
class
((mUV‘𝑡)
“ {((mType‘𝑡)‘𝑖)}) |
| 27 | 17, 20, 26 | cixp 8920 |
. . . . . 6
class X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) |
| 28 | | cmap 8849 |
. . . . . 6
class
↑m |
| 29 | 16, 27, 28 | co 7414 |
. . . . 5
class
(((mUV‘𝑡)
“ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) |
| 30 | 5, 8, 29 | cixp 8920 |
. . . 4
class X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) |
| 31 | | vm |
. . . . . . . . . . 11
setvar 𝑚 |
| 32 | 31 | cv 1538 |
. . . . . . . . . 10
class 𝑚 |
| 33 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
| 34 | 33 | cv 1538 |
. . . . . . . . . . 11
class 𝑣 |
| 35 | | cmvh 35418 |
. . . . . . . . . . . 12
class
mVH |
| 36 | 6, 35 | cfv 6542 |
. . . . . . . . . . 11
class
(mVH‘𝑡) |
| 37 | 34, 36 | cfv 6542 |
. . . . . . . . . 10
class
((mVH‘𝑡)‘𝑣) |
| 38 | 32, 37 | cop 4614 |
. . . . . . . . 9
class
〈𝑚,
((mVH‘𝑡)‘𝑣)〉 |
| 39 | 34, 32 | cfv 6542 |
. . . . . . . . 9
class (𝑚‘𝑣) |
| 40 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 41 | 40 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
| 42 | 38, 39, 41 | wbr 5125 |
. . . . . . . 8
wff 〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) |
| 43 | | cmvar 35407 |
. . . . . . . . 9
class
mVR |
| 44 | 6, 43 | cfv 6542 |
. . . . . . . 8
class
(mVR‘𝑡) |
| 45 | 42, 33, 44 | wral 3050 |
. . . . . . 7
wff
∀𝑣 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) |
| 46 | | ve |
. . . . . . . . . . . . 13
setvar 𝑒 |
| 47 | 46 | cv 1538 |
. . . . . . . . . . . 12
class 𝑒 |
| 48 | | vg |
. . . . . . . . . . . . . 14
setvar 𝑔 |
| 49 | 48 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑔 |
| 50 | 11, 49 | cop 4614 |
. . . . . . . . . . . 12
class
〈𝑎, 𝑔〉 |
| 51 | | cmst 35538 |
. . . . . . . . . . . . 13
class
mST |
| 52 | 6, 51 | cfv 6542 |
. . . . . . . . . . . 12
class
(mST‘𝑡) |
| 53 | 47, 50, 52 | wbr 5125 |
. . . . . . . . . . 11
wff 𝑒(mST‘𝑡)〈𝑎, 𝑔〉 |
| 54 | 32, 47 | cop 4614 |
. . . . . . . . . . . 12
class
〈𝑚, 𝑒〉 |
| 55 | 21, 36 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class
((mVH‘𝑡)‘𝑖) |
| 56 | 55, 49 | cfv 6542 |
. . . . . . . . . . . . . . 15
class (𝑔‘((mVH‘𝑡)‘𝑖)) |
| 57 | 32, 56, 41 | co 7414 |
. . . . . . . . . . . . . 14
class (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))) |
| 58 | 17, 20, 57 | cmpt 5207 |
. . . . . . . . . . . . 13
class (𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))) |
| 59 | 4 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑓 |
| 60 | 58, 59 | cfv 6542 |
. . . . . . . . . . . 12
class (𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))))) |
| 61 | 54, 60, 41 | wbr 5125 |
. . . . . . . . . . 11
wff 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))))) |
| 62 | 53, 61 | wi 4 |
. . . . . . . . . 10
wff (𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
| 63 | 62, 48 | wal 1537 |
. . . . . . . . 9
wff
∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
| 64 | 63, 5 | wal 1537 |
. . . . . . . 8
wff
∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
| 65 | 64, 46 | wal 1537 |
. . . . . . 7
wff
∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
| 66 | 54 | csn 4608 |
. . . . . . . . . 10
class
{〈𝑚, 𝑒〉} |
| 67 | 41, 66 | cima 5670 |
. . . . . . . . 9
class (𝑛 “ {〈𝑚, 𝑒〉}) |
| 68 | | cmesy 35535 |
. . . . . . . . . . . . . . 15
class
mESyn |
| 69 | 6, 68 | cfv 6542 |
. . . . . . . . . . . . . 14
class
(mESyn‘𝑡) |
| 70 | 47, 69 | cfv 6542 |
. . . . . . . . . . . . 13
class
((mESyn‘𝑡)‘𝑒) |
| 71 | 32, 70 | cop 4614 |
. . . . . . . . . . . 12
class
〈𝑚,
((mESyn‘𝑡)‘𝑒)〉 |
| 72 | 71 | csn 4608 |
. . . . . . . . . . 11
class
{〈𝑚,
((mESyn‘𝑡)‘𝑒)〉} |
| 73 | 41, 72 | cima 5670 |
. . . . . . . . . 10
class (𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) |
| 74 | 47, 12 | cfv 6542 |
. . . . . . . . . . . 12
class
(1st ‘𝑒) |
| 75 | 74 | csn 4608 |
. . . . . . . . . . 11
class
{(1st ‘𝑒)} |
| 76 | 10, 75 | cima 5670 |
. . . . . . . . . 10
class
((mUV‘𝑡)
“ {(1st ‘𝑒)}) |
| 77 | 73, 76 | cin 3932 |
. . . . . . . . 9
class ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
| 78 | 67, 77 | wceq 1539 |
. . . . . . . 8
wff (𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
| 79 | | cmex 35413 |
. . . . . . . . 9
class
mEx |
| 80 | 6, 79 | cfv 6542 |
. . . . . . . 8
class
(mEx‘𝑡) |
| 81 | 78, 46, 80 | wral 3050 |
. . . . . . 7
wff
∀𝑒 ∈
(mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
| 82 | 45, 65, 81 | w3a 1086 |
. . . . . 6
wff
(∀𝑣 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))) |
| 83 | | cmvl 35552 |
. . . . . . 7
class
mVL |
| 84 | 6, 83 | cfv 6542 |
. . . . . 6
class
(mVL‘𝑡) |
| 85 | 82, 31, 84 | wral 3050 |
. . . . 5
wff
∀𝑚 ∈
(mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))) |
| 86 | 84, 80 | cxp 5665 |
. . . . . 6
class
((mVL‘𝑡)
× (mEx‘𝑡)) |
| 87 | | cpm 8850 |
. . . . . 6
class
↑pm |
| 88 | 10, 86, 87 | co 7414 |
. . . . 5
class
((mUV‘𝑡)
↑pm ((mVL‘𝑡) × (mEx‘𝑡))) |
| 89 | 85, 40, 88 | crio 7370 |
. . . 4
class
(℩𝑛
∈ ((mUV‘𝑡)
↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))) |
| 90 | 4, 30, 89 | cmpt 5207 |
. . 3
class (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))))) |
| 91 | 2, 3, 90 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |
| 92 | 1, 91 | wceq 1539 |
1
wff mFromItp =
(𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |