Detailed syntax breakdown of Definition df-mfitp
Step | Hyp | Ref
| Expression |
1 | | cmfitp 33093 |
. 2
class
mFromItp |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vf |
. . . 4
setvar 𝑓 |
5 | | va |
. . . . 5
setvar 𝑎 |
6 | 2 | cv 1537 |
. . . . . 6
class 𝑡 |
7 | | cmsa 33064 |
. . . . . 6
class
mSA |
8 | 6, 7 | cfv 6335 |
. . . . 5
class
(mSA‘𝑡) |
9 | | cmuv 33083 |
. . . . . . . 8
class
mUV |
10 | 6, 9 | cfv 6335 |
. . . . . . 7
class
(mUV‘𝑡) |
11 | 5 | cv 1537 |
. . . . . . . . 9
class 𝑎 |
12 | | c1st 7691 |
. . . . . . . . . 10
class
1st |
13 | 6, 12 | cfv 6335 |
. . . . . . . . 9
class
(1st ‘𝑡) |
14 | 11, 13 | cfv 6335 |
. . . . . . . 8
class
((1st ‘𝑡)‘𝑎) |
15 | 14 | csn 4522 |
. . . . . . 7
class
{((1st ‘𝑡)‘𝑎)} |
16 | 10, 15 | cima 5527 |
. . . . . 6
class
((mUV‘𝑡)
“ {((1st ‘𝑡)‘𝑎)}) |
17 | | vi |
. . . . . . 7
setvar 𝑖 |
18 | | cmvrs 32947 |
. . . . . . . . 9
class
mVars |
19 | 6, 18 | cfv 6335 |
. . . . . . . 8
class
(mVars‘𝑡) |
20 | 11, 19 | cfv 6335 |
. . . . . . 7
class
((mVars‘𝑡)‘𝑎) |
21 | 17 | cv 1537 |
. . . . . . . . . 10
class 𝑖 |
22 | | cmty 32940 |
. . . . . . . . . . 11
class
mType |
23 | 6, 22 | cfv 6335 |
. . . . . . . . . 10
class
(mType‘𝑡) |
24 | 21, 23 | cfv 6335 |
. . . . . . . . 9
class
((mType‘𝑡)‘𝑖) |
25 | 24 | csn 4522 |
. . . . . . . 8
class
{((mType‘𝑡)‘𝑖)} |
26 | 10, 25 | cima 5527 |
. . . . . . 7
class
((mUV‘𝑡)
“ {((mType‘𝑡)‘𝑖)}) |
27 | 17, 20, 26 | cixp 8479 |
. . . . . 6
class X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) |
28 | | cmap 8416 |
. . . . . 6
class
↑m |
29 | 16, 27, 28 | co 7150 |
. . . . 5
class
(((mUV‘𝑡)
“ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) |
30 | 5, 8, 29 | cixp 8479 |
. . . 4
class X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) |
31 | | vm |
. . . . . . . . . . 11
setvar 𝑚 |
32 | 31 | cv 1537 |
. . . . . . . . . 10
class 𝑚 |
33 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
34 | 33 | cv 1537 |
. . . . . . . . . . 11
class 𝑣 |
35 | | cmvh 32950 |
. . . . . . . . . . . 12
class
mVH |
36 | 6, 35 | cfv 6335 |
. . . . . . . . . . 11
class
(mVH‘𝑡) |
37 | 34, 36 | cfv 6335 |
. . . . . . . . . 10
class
((mVH‘𝑡)‘𝑣) |
38 | 32, 37 | cop 4528 |
. . . . . . . . 9
class
〈𝑚,
((mVH‘𝑡)‘𝑣)〉 |
39 | 34, 32 | cfv 6335 |
. . . . . . . . 9
class (𝑚‘𝑣) |
40 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
41 | 40 | cv 1537 |
. . . . . . . . 9
class 𝑛 |
42 | 38, 39, 41 | wbr 5032 |
. . . . . . . 8
wff 〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) |
43 | | cmvar 32939 |
. . . . . . . . 9
class
mVR |
44 | 6, 43 | cfv 6335 |
. . . . . . . 8
class
(mVR‘𝑡) |
45 | 42, 33, 44 | wral 3070 |
. . . . . . 7
wff
∀𝑣 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) |
46 | | ve |
. . . . . . . . . . . . 13
setvar 𝑒 |
47 | 46 | cv 1537 |
. . . . . . . . . . . 12
class 𝑒 |
48 | | vg |
. . . . . . . . . . . . . 14
setvar 𝑔 |
49 | 48 | cv 1537 |
. . . . . . . . . . . . 13
class 𝑔 |
50 | 11, 49 | cop 4528 |
. . . . . . . . . . . 12
class
〈𝑎, 𝑔〉 |
51 | | cmst 33070 |
. . . . . . . . . . . . 13
class
mST |
52 | 6, 51 | cfv 6335 |
. . . . . . . . . . . 12
class
(mST‘𝑡) |
53 | 47, 50, 52 | wbr 5032 |
. . . . . . . . . . 11
wff 𝑒(mST‘𝑡)〈𝑎, 𝑔〉 |
54 | 32, 47 | cop 4528 |
. . . . . . . . . . . 12
class
〈𝑚, 𝑒〉 |
55 | 21, 36 | cfv 6335 |
. . . . . . . . . . . . . . . 16
class
((mVH‘𝑡)‘𝑖) |
56 | 55, 49 | cfv 6335 |
. . . . . . . . . . . . . . 15
class (𝑔‘((mVH‘𝑡)‘𝑖)) |
57 | 32, 56, 41 | co 7150 |
. . . . . . . . . . . . . 14
class (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))) |
58 | 17, 20, 57 | cmpt 5112 |
. . . . . . . . . . . . 13
class (𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))) |
59 | 4 | cv 1537 |
. . . . . . . . . . . . 13
class 𝑓 |
60 | 58, 59 | cfv 6335 |
. . . . . . . . . . . 12
class (𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))))) |
61 | 54, 60, 41 | wbr 5032 |
. . . . . . . . . . 11
wff 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖))))) |
62 | 53, 61 | wi 4 |
. . . . . . . . . 10
wff (𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
63 | 62, 48 | wal 1536 |
. . . . . . . . 9
wff
∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
64 | 63, 5 | wal 1536 |
. . . . . . . 8
wff
∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
65 | 64, 46 | wal 1536 |
. . . . . . 7
wff
∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) |
66 | 54 | csn 4522 |
. . . . . . . . . 10
class
{〈𝑚, 𝑒〉} |
67 | 41, 66 | cima 5527 |
. . . . . . . . 9
class (𝑛 “ {〈𝑚, 𝑒〉}) |
68 | | cmesy 33067 |
. . . . . . . . . . . . . . 15
class
mESyn |
69 | 6, 68 | cfv 6335 |
. . . . . . . . . . . . . 14
class
(mESyn‘𝑡) |
70 | 47, 69 | cfv 6335 |
. . . . . . . . . . . . 13
class
((mESyn‘𝑡)‘𝑒) |
71 | 32, 70 | cop 4528 |
. . . . . . . . . . . 12
class
〈𝑚,
((mESyn‘𝑡)‘𝑒)〉 |
72 | 71 | csn 4522 |
. . . . . . . . . . 11
class
{〈𝑚,
((mESyn‘𝑡)‘𝑒)〉} |
73 | 41, 72 | cima 5527 |
. . . . . . . . . 10
class (𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) |
74 | 47, 12 | cfv 6335 |
. . . . . . . . . . . 12
class
(1st ‘𝑒) |
75 | 74 | csn 4522 |
. . . . . . . . . . 11
class
{(1st ‘𝑒)} |
76 | 10, 75 | cima 5527 |
. . . . . . . . . 10
class
((mUV‘𝑡)
“ {(1st ‘𝑒)}) |
77 | 73, 76 | cin 3857 |
. . . . . . . . 9
class ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
78 | 67, 77 | wceq 1538 |
. . . . . . . 8
wff (𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
79 | | cmex 32945 |
. . . . . . . . 9
class
mEx |
80 | 6, 79 | cfv 6335 |
. . . . . . . 8
class
(mEx‘𝑡) |
81 | 78, 46, 80 | wral 3070 |
. . . . . . 7
wff
∀𝑒 ∈
(mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
82 | 45, 65, 81 | w3a 1084 |
. . . . . 6
wff
(∀𝑣 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))) |
83 | | cmvl 33084 |
. . . . . . 7
class
mVL |
84 | 6, 83 | cfv 6335 |
. . . . . 6
class
(mVL‘𝑡) |
85 | 82, 31, 84 | wral 3070 |
. . . . 5
wff
∀𝑚 ∈
(mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))) |
86 | 84, 80 | cxp 5522 |
. . . . . 6
class
((mVL‘𝑡)
× (mEx‘𝑡)) |
87 | | cpm 8417 |
. . . . . 6
class
↑pm |
88 | 10, 86, 87 | co 7150 |
. . . . 5
class
((mUV‘𝑡)
↑pm ((mVL‘𝑡) × (mEx‘𝑡))) |
89 | 85, 40, 88 | crio 7107 |
. . . 4
class
(℩𝑛
∈ ((mUV‘𝑡)
↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))) |
90 | 4, 30, 89 | cmpt 5112 |
. . 3
class (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))))) |
91 | 2, 3, 90 | cmpt 5112 |
. 2
class (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |
92 | 1, 91 | wceq 1538 |
1
wff mFromItp =
(𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈
(mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |