Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mitp Structured version   Visualization version   GIF version

Definition df-mitp 34647
Description: Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mitp mItp = (𝑑 ∈ V ↦ (π‘Ž ∈ (mSAβ€˜π‘‘) ↦ (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))))))
Distinct variable group:   𝑔,π‘Ž,𝑖,π‘š,𝑑,π‘₯

Detailed syntax breakdown of Definition df-mitp
StepHypRef Expression
1 cmitp 34636 . 2 class mItp
2 vt . . 3 setvar 𝑑
3 cvv 3475 . . 3 class V
4 va . . . 4 setvar π‘Ž
52cv 1541 . . . . 5 class 𝑑
6 cmsa 34608 . . . . 5 class mSA
75, 6cfv 6544 . . . 4 class (mSAβ€˜π‘‘)
8 vg . . . . 5 setvar 𝑔
9 vi . . . . . 6 setvar 𝑖
104cv 1541 . . . . . . 7 class π‘Ž
11 cmvrs 34491 . . . . . . . 8 class mVars
125, 11cfv 6544 . . . . . . 7 class (mVarsβ€˜π‘‘)
1310, 12cfv 6544 . . . . . 6 class ((mVarsβ€˜π‘‘)β€˜π‘Ž)
14 cmuv 34627 . . . . . . . 8 class mUV
155, 14cfv 6544 . . . . . . 7 class (mUVβ€˜π‘‘)
169cv 1541 . . . . . . . . 9 class 𝑖
17 cmty 34484 . . . . . . . . . 10 class mType
185, 17cfv 6544 . . . . . . . . 9 class (mTypeβ€˜π‘‘)
1916, 18cfv 6544 . . . . . . . 8 class ((mTypeβ€˜π‘‘)β€˜π‘–)
2019csn 4629 . . . . . . 7 class {((mTypeβ€˜π‘‘)β€˜π‘–)}
2115, 20cima 5680 . . . . . 6 class ((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)})
229, 13, 21cixp 8891 . . . . 5 class X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)})
238cv 1541 . . . . . . . . 9 class 𝑔
24 vm . . . . . . . . . . 11 setvar π‘š
2524cv 1541 . . . . . . . . . 10 class π‘š
2625, 13cres 5679 . . . . . . . . 9 class (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž))
2723, 26wceq 1542 . . . . . . . 8 wff 𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž))
28 vx . . . . . . . . . 10 setvar π‘₯
2928cv 1541 . . . . . . . . 9 class π‘₯
30 cmevl 34632 . . . . . . . . . . 11 class mEval
315, 30cfv 6544 . . . . . . . . . 10 class (mEvalβ€˜π‘‘)
3225, 10, 31co 7409 . . . . . . . . 9 class (π‘š(mEvalβ€˜π‘‘)π‘Ž)
3329, 32wceq 1542 . . . . . . . 8 wff π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž)
3427, 33wa 397 . . . . . . 7 wff (𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))
35 cmvl 34628 . . . . . . . 8 class mVL
365, 35cfv 6544 . . . . . . 7 class (mVLβ€˜π‘‘)
3734, 24, 36wrex 3071 . . . . . 6 wff βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))
3837, 28cio 6494 . . . . 5 class (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž)))
398, 22, 38cmpt 5232 . . . 4 class (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))))
404, 7, 39cmpt 5232 . . 3 class (π‘Ž ∈ (mSAβ€˜π‘‘) ↦ (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž)))))
412, 3, 40cmpt 5232 . 2 class (𝑑 ∈ V ↦ (π‘Ž ∈ (mSAβ€˜π‘‘) ↦ (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))))))
421, 41wceq 1542 1 wff mItp = (𝑑 ∈ V ↦ (π‘Ž ∈ (mSAβ€˜π‘‘) ↦ (𝑔 ∈ X𝑖 ∈ ((mVarsβ€˜π‘‘)β€˜π‘Ž)((mUVβ€˜π‘‘) β€œ {((mTypeβ€˜π‘‘)β€˜π‘–)}) ↦ (β„©π‘₯βˆƒπ‘š ∈ (mVLβ€˜π‘‘)(𝑔 = (π‘š β†Ύ ((mVarsβ€˜π‘‘)β€˜π‘Ž)) ∧ π‘₯ = (π‘š(mEvalβ€˜π‘‘)π‘Ž))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator