Detailed syntax breakdown of Definition df-mitp
| Step | Hyp | Ref
| Expression |
| 1 | | cmitp 35560 |
. 2
class
mItp |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | va |
. . . 4
setvar 𝑎 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
| 6 | | cmsa 35532 |
. . . . 5
class
mSA |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(mSA‘𝑡) |
| 8 | | vg |
. . . . 5
setvar 𝑔 |
| 9 | | vi |
. . . . . 6
setvar 𝑖 |
| 10 | 4 | cv 1538 |
. . . . . . 7
class 𝑎 |
| 11 | | cmvrs 35415 |
. . . . . . . 8
class
mVars |
| 12 | 5, 11 | cfv 6542 |
. . . . . . 7
class
(mVars‘𝑡) |
| 13 | 10, 12 | cfv 6542 |
. . . . . 6
class
((mVars‘𝑡)‘𝑎) |
| 14 | | cmuv 35551 |
. . . . . . . 8
class
mUV |
| 15 | 5, 14 | cfv 6542 |
. . . . . . 7
class
(mUV‘𝑡) |
| 16 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑖 |
| 17 | | cmty 35408 |
. . . . . . . . . 10
class
mType |
| 18 | 5, 17 | cfv 6542 |
. . . . . . . . 9
class
(mType‘𝑡) |
| 19 | 16, 18 | cfv 6542 |
. . . . . . . 8
class
((mType‘𝑡)‘𝑖) |
| 20 | 19 | csn 4608 |
. . . . . . 7
class
{((mType‘𝑡)‘𝑖)} |
| 21 | 15, 20 | cima 5670 |
. . . . . 6
class
((mUV‘𝑡)
“ {((mType‘𝑡)‘𝑖)}) |
| 22 | 9, 13, 21 | cixp 8920 |
. . . . 5
class X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) |
| 23 | 8 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
| 24 | | vm |
. . . . . . . . . . 11
setvar 𝑚 |
| 25 | 24 | cv 1538 |
. . . . . . . . . 10
class 𝑚 |
| 26 | 25, 13 | cres 5669 |
. . . . . . . . 9
class (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) |
| 27 | 23, 26 | wceq 1539 |
. . . . . . . 8
wff 𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) |
| 28 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 29 | 28 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
| 30 | | cmevl 35556 |
. . . . . . . . . . 11
class
mEval |
| 31 | 5, 30 | cfv 6542 |
. . . . . . . . . 10
class
(mEval‘𝑡) |
| 32 | 25, 10, 31 | co 7414 |
. . . . . . . . 9
class (𝑚(mEval‘𝑡)𝑎) |
| 33 | 29, 32 | wceq 1539 |
. . . . . . . 8
wff 𝑥 = (𝑚(mEval‘𝑡)𝑎) |
| 34 | 27, 33 | wa 395 |
. . . . . . 7
wff (𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)) |
| 35 | | cmvl 35552 |
. . . . . . . 8
class
mVL |
| 36 | 5, 35 | cfv 6542 |
. . . . . . 7
class
(mVL‘𝑡) |
| 37 | 34, 24, 36 | wrex 3059 |
. . . . . 6
wff
∃𝑚 ∈
(mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)) |
| 38 | 37, 28 | cio 6493 |
. . . . 5
class
(℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎))) |
| 39 | 8, 22, 38 | cmpt 5207 |
. . . 4
class (𝑔 ∈ X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))) |
| 40 | 4, 7, 39 | cmpt 5207 |
. . 3
class (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎))))) |
| 41 | 2, 3, 40 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) |
| 42 | 1, 41 | wceq 1539 |
1
wff mItp =
(𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) |