Step | Hyp | Ref
| Expression |
1 | | cmitp 34636 |
. 2
class
mItp |
2 | | vt |
. . 3
setvar π‘ |
3 | | cvv 3475 |
. . 3
class
V |
4 | | va |
. . . 4
setvar π |
5 | 2 | cv 1541 |
. . . . 5
class π‘ |
6 | | cmsa 34608 |
. . . . 5
class
mSA |
7 | 5, 6 | cfv 6544 |
. . . 4
class
(mSAβπ‘) |
8 | | vg |
. . . . 5
setvar π |
9 | | vi |
. . . . . 6
setvar π |
10 | 4 | cv 1541 |
. . . . . . 7
class π |
11 | | cmvrs 34491 |
. . . . . . . 8
class
mVars |
12 | 5, 11 | cfv 6544 |
. . . . . . 7
class
(mVarsβπ‘) |
13 | 10, 12 | cfv 6544 |
. . . . . 6
class
((mVarsβπ‘)βπ) |
14 | | cmuv 34627 |
. . . . . . . 8
class
mUV |
15 | 5, 14 | cfv 6544 |
. . . . . . 7
class
(mUVβπ‘) |
16 | 9 | cv 1541 |
. . . . . . . . 9
class π |
17 | | cmty 34484 |
. . . . . . . . . 10
class
mType |
18 | 5, 17 | cfv 6544 |
. . . . . . . . 9
class
(mTypeβπ‘) |
19 | 16, 18 | cfv 6544 |
. . . . . . . 8
class
((mTypeβπ‘)βπ) |
20 | 19 | csn 4629 |
. . . . . . 7
class
{((mTypeβπ‘)βπ)} |
21 | 15, 20 | cima 5680 |
. . . . . 6
class
((mUVβπ‘)
β {((mTypeβπ‘)βπ)}) |
22 | 9, 13, 21 | cixp 8891 |
. . . . 5
class Xπ β
((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) |
23 | 8 | cv 1541 |
. . . . . . . . 9
class π |
24 | | vm |
. . . . . . . . . . 11
setvar π |
25 | 24 | cv 1541 |
. . . . . . . . . 10
class π |
26 | 25, 13 | cres 5679 |
. . . . . . . . 9
class (π βΎ ((mVarsβπ‘)βπ)) |
27 | 23, 26 | wceq 1542 |
. . . . . . . 8
wff π = (π βΎ ((mVarsβπ‘)βπ)) |
28 | | vx |
. . . . . . . . . 10
setvar π₯ |
29 | 28 | cv 1541 |
. . . . . . . . 9
class π₯ |
30 | | cmevl 34632 |
. . . . . . . . . . 11
class
mEval |
31 | 5, 30 | cfv 6544 |
. . . . . . . . . 10
class
(mEvalβπ‘) |
32 | 25, 10, 31 | co 7409 |
. . . . . . . . 9
class (π(mEvalβπ‘)π) |
33 | 29, 32 | wceq 1542 |
. . . . . . . 8
wff π₯ = (π(mEvalβπ‘)π) |
34 | 27, 33 | wa 397 |
. . . . . . 7
wff (π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)) |
35 | | cmvl 34628 |
. . . . . . . 8
class
mVL |
36 | 5, 35 | cfv 6544 |
. . . . . . 7
class
(mVLβπ‘) |
37 | 34, 24, 36 | wrex 3071 |
. . . . . 6
wff
βπ β
(mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)) |
38 | 37, 28 | cio 6494 |
. . . . 5
class
(β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π))) |
39 | 8, 22, 38 | cmpt 5232 |
. . . 4
class (π β Xπ β
((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) β¦ (β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)))) |
40 | 4, 7, 39 | cmpt 5232 |
. . 3
class (π β (mSAβπ‘) β¦ (π β Xπ β ((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) β¦ (β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π))))) |
41 | 2, 3, 40 | cmpt 5232 |
. 2
class (π‘ β V β¦ (π β (mSAβπ‘) β¦ (π β Xπ β ((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) β¦ (β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)))))) |
42 | 1, 41 | wceq 1542 |
1
wff mItp =
(π‘ β V β¦ (π β (mSAβπ‘) β¦ (π β Xπ β ((mVarsβπ‘)βπ)((mUVβπ‘) β {((mTypeβπ‘)βπ)}) β¦ (β©π₯βπ β (mVLβπ‘)(π = (π βΎ ((mVarsβπ‘)βπ)) β§ π₯ = (π(mEvalβπ‘)π)))))) |