Detailed syntax breakdown of Definition df-gmdl
Step | Hyp | Ref
| Expression |
1 | | cgmdl 33554 |
. 2
class
mGMdl |
2 | | vt |
. . . . . . . . 9
setvar 𝑡 |
3 | 2 | cv 1540 |
. . . . . . . 8
class 𝑡 |
4 | | cmuv 33546 |
. . . . . . . 8
class
mUV |
5 | 3, 4 | cfv 6430 |
. . . . . . 7
class
(mUV‘𝑡) |
6 | | vc |
. . . . . . . . 9
setvar 𝑐 |
7 | 6 | cv 1540 |
. . . . . . . 8
class 𝑐 |
8 | 7 | csn 4566 |
. . . . . . 7
class {𝑐} |
9 | 5, 8 | cima 5591 |
. . . . . 6
class
((mUV‘𝑡)
“ {𝑐}) |
10 | | cmsy 33529 |
. . . . . . . . . 10
class
mSyn |
11 | 3, 10 | cfv 6430 |
. . . . . . . . 9
class
(mSyn‘𝑡) |
12 | 7, 11 | cfv 6430 |
. . . . . . . 8
class
((mSyn‘𝑡)‘𝑐) |
13 | 12 | csn 4566 |
. . . . . . 7
class
{((mSyn‘𝑡)‘𝑐)} |
14 | 5, 13 | cima 5591 |
. . . . . 6
class
((mUV‘𝑡)
“ {((mSyn‘𝑡)‘𝑐)}) |
15 | 9, 14 | wss 3891 |
. . . . 5
wff
((mUV‘𝑡)
“ {𝑐}) ⊆
((mUV‘𝑡) “
{((mSyn‘𝑡)‘𝑐)}) |
16 | | cmtc 33405 |
. . . . . 6
class
mTC |
17 | 3, 16 | cfv 6430 |
. . . . 5
class
(mTC‘𝑡) |
18 | 15, 6, 17 | wral 3065 |
. . . 4
wff
∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) |
19 | | vv |
. . . . . . . . 9
setvar 𝑣 |
20 | 19 | cv 1540 |
. . . . . . . 8
class 𝑣 |
21 | | vw |
. . . . . . . . 9
setvar 𝑤 |
22 | 21 | cv 1540 |
. . . . . . . 8
class 𝑤 |
23 | | cmfsh 33549 |
. . . . . . . . 9
class
mFresh |
24 | 3, 23 | cfv 6430 |
. . . . . . . 8
class
(mFresh‘𝑡) |
25 | 20, 22, 24 | wbr 5078 |
. . . . . . 7
wff 𝑣(mFresh‘𝑡)𝑤 |
26 | | cusyn 33553 |
. . . . . . . . . 10
class
mUSyn |
27 | 3, 26 | cfv 6430 |
. . . . . . . . 9
class
(mUSyn‘𝑡) |
28 | 22, 27 | cfv 6430 |
. . . . . . . 8
class
((mUSyn‘𝑡)‘𝑤) |
29 | 20, 28, 24 | wbr 5078 |
. . . . . . 7
wff 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤) |
30 | 25, 29 | wb 205 |
. . . . . 6
wff (𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) |
31 | 7, 4 | cfv 6430 |
. . . . . 6
class
(mUV‘𝑐) |
32 | 30, 21, 31 | wral 3065 |
. . . . 5
wff
∀𝑤 ∈
(mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) |
33 | 32, 19, 31 | wral 3065 |
. . . 4
wff
∀𝑣 ∈
(mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) |
34 | | cmevl 33551 |
. . . . . . . . 9
class
mEval |
35 | 3, 34 | cfv 6430 |
. . . . . . . 8
class
(mEval‘𝑡) |
36 | | vm |
. . . . . . . . . . 11
setvar 𝑚 |
37 | 36 | cv 1540 |
. . . . . . . . . 10
class 𝑚 |
38 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
39 | 38 | cv 1540 |
. . . . . . . . . 10
class 𝑒 |
40 | 37, 39 | cop 4572 |
. . . . . . . . 9
class
〈𝑚, 𝑒〉 |
41 | 40 | csn 4566 |
. . . . . . . 8
class
{〈𝑚, 𝑒〉} |
42 | 35, 41 | cima 5591 |
. . . . . . 7
class
((mEval‘𝑡)
“ {〈𝑚, 𝑒〉}) |
43 | | cmesy 33530 |
. . . . . . . . . . . . 13
class
mESyn |
44 | 3, 43 | cfv 6430 |
. . . . . . . . . . . 12
class
(mESyn‘𝑡) |
45 | 39, 44 | cfv 6430 |
. . . . . . . . . . 11
class
((mESyn‘𝑡)‘𝑒) |
46 | 37, 45 | cop 4572 |
. . . . . . . . . 10
class
〈𝑚,
((mESyn‘𝑡)‘𝑒)〉 |
47 | 46 | csn 4566 |
. . . . . . . . 9
class
{〈𝑚,
((mESyn‘𝑡)‘𝑒)〉} |
48 | 35, 47 | cima 5591 |
. . . . . . . 8
class
((mEval‘𝑡)
“ {〈𝑚,
((mESyn‘𝑡)‘𝑒)〉}) |
49 | | c1st 7815 |
. . . . . . . . . . 11
class
1st |
50 | 39, 49 | cfv 6430 |
. . . . . . . . . 10
class
(1st ‘𝑒) |
51 | 50 | csn 4566 |
. . . . . . . . 9
class
{(1st ‘𝑒)} |
52 | 5, 51 | cima 5591 |
. . . . . . . 8
class
((mUV‘𝑡)
“ {(1st ‘𝑒)}) |
53 | 48, 52 | cin 3890 |
. . . . . . 7
class
(((mEval‘𝑡)
“ {〈𝑚,
((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
54 | 42, 53 | wceq 1541 |
. . . . . 6
wff
((mEval‘𝑡)
“ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
55 | | cmex 33408 |
. . . . . . 7
class
mEx |
56 | 3, 55 | cfv 6430 |
. . . . . 6
class
(mEx‘𝑡) |
57 | 54, 38, 56 | wral 3065 |
. . . . 5
wff
∀𝑒 ∈
(mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
58 | | cmvl 33547 |
. . . . . 6
class
mVL |
59 | 3, 58 | cfv 6430 |
. . . . 5
class
(mVL‘𝑡) |
60 | 57, 36, 59 | wral 3065 |
. . . 4
wff
∀𝑚 ∈
(mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})) |
61 | 18, 33, 60 | w3a 1085 |
. . 3
wff
(∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)}))) |
62 | | cmgfs 33531 |
. . . 4
class
mGFS |
63 | | cmdl 33552 |
. . . 4
class
mMdl |
64 | 62, 63 | cin 3890 |
. . 3
class (mGFS
∩ mMdl) |
65 | 61, 2, 64 | crab 3069 |
. 2
class {𝑡 ∈ (mGFS ∩ mMdl)
∣ (∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))} |
66 | 1, 65 | wceq 1541 |
1
wff mGMdl =
{𝑡 ∈ (mGFS ∩ mMdl)
∣ (∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))} |