Detailed syntax breakdown of Definition df-mon1
| Step | Hyp | Ref
| Expression |
| 1 | | cmn1 26165 |
. 2
class
Monic1p |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . . . . 7
setvar 𝑓 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑓 |
| 6 | 2 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 7 | | cpl1 22178 |
. . . . . . . 8
class
Poly1 |
| 8 | 6, 7 | cfv 6561 |
. . . . . . 7
class
(Poly1‘𝑟) |
| 9 | | c0g 17484 |
. . . . . . 7
class
0g |
| 10 | 8, 9 | cfv 6561 |
. . . . . 6
class
(0g‘(Poly1‘𝑟)) |
| 11 | 5, 10 | wne 2940 |
. . . . 5
wff 𝑓 ≠
(0g‘(Poly1‘𝑟)) |
| 12 | | cdg1 26093 |
. . . . . . . . 9
class
deg1 |
| 13 | 6, 12 | cfv 6561 |
. . . . . . . 8
class
(deg1‘𝑟) |
| 14 | 5, 13 | cfv 6561 |
. . . . . . 7
class
((deg1‘𝑟)‘𝑓) |
| 15 | | cco1 22179 |
. . . . . . . 8
class
coe1 |
| 16 | 5, 15 | cfv 6561 |
. . . . . . 7
class
(coe1‘𝑓) |
| 17 | 14, 16 | cfv 6561 |
. . . . . 6
class
((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) |
| 18 | | cur 20178 |
. . . . . . 7
class
1r |
| 19 | 6, 18 | cfv 6561 |
. . . . . 6
class
(1r‘𝑟) |
| 20 | 17, 19 | wceq 1540 |
. . . . 5
wff
((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟) |
| 21 | 11, 20 | wa 395 |
. . . 4
wff (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟)) |
| 22 | | cbs 17247 |
. . . . 5
class
Base |
| 23 | 8, 22 | cfv 6561 |
. . . 4
class
(Base‘(Poly1‘𝑟)) |
| 24 | 21, 4, 23 | crab 3436 |
. . 3
class {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))} |
| 25 | 2, 3, 24 | cmpt 5225 |
. 2
class (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) |
| 26 | 1, 25 | wceq 1540 |
1
wff
Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) |