MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26037
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26043. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26032 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3447 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . 8 class 𝑟
7 cpl1 22061 . . . . . . . 8 class Poly1
86, 7cfv 6511 . . . . . . 7 class (Poly1𝑟)
9 c0g 17402 . . . . . . 7 class 0g
108, 9cfv 6511 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2925 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 25959 . . . . . . . . 9 class deg1
136, 12cfv 6511 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6511 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22062 . . . . . . . 8 class coe1
165, 15cfv 6511 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6511 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20264 . . . . . . 7 class Unit
196, 18cfv 6511 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2109 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17179 . . . . 5 class Base
238, 22cfv 6511 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3405 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5188 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1540 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26045
  Copyright terms: Public domain W3C validator