MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26087
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26093. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26082 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3459 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . 8 class 𝑟
7 cpl1 22110 . . . . . . . 8 class Poly1
86, 7cfv 6530 . . . . . . 7 class (Poly1𝑟)
9 c0g 17451 . . . . . . 7 class 0g
108, 9cfv 6530 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2932 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 26009 . . . . . . . . 9 class deg1
136, 12cfv 6530 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6530 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22111 . . . . . . . 8 class coe1
165, 15cfv 6530 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6530 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20313 . . . . . . 7 class Unit
196, 18cfv 6530 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2108 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17226 . . . . 5 class Base
238, 22cfv 6530 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3415 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5201 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1540 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26095
  Copyright terms: Public domain W3C validator