MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26013
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26019. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26008 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3444 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . 8 class 𝑟
7 cpl1 22037 . . . . . . . 8 class Poly1
86, 7cfv 6499 . . . . . . 7 class (Poly1𝑟)
9 c0g 17378 . . . . . . 7 class 0g
108, 9cfv 6499 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2925 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 25935 . . . . . . . . 9 class deg1
136, 12cfv 6499 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6499 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22038 . . . . . . . 8 class coe1
165, 15cfv 6499 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6499 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20240 . . . . . . 7 class Unit
196, 18cfv 6499 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2109 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17155 . . . . 5 class Base
238, 22cfv 6499 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3402 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5183 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1540 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26021
  Copyright terms: Public domain W3C validator