MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 25649
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 25655. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (π‘Ÿ ∈ V ↦ {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))})
Distinct variable group:   𝑓,π‘Ÿ

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 25644 . 2 class Unic1p
2 vr . . 3 setvar π‘Ÿ
3 cvv 3475 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1541 . . . . . 6 class 𝑓
62cv 1541 . . . . . . . 8 class π‘Ÿ
7 cpl1 21701 . . . . . . . 8 class Poly1
86, 7cfv 6544 . . . . . . 7 class (Poly1β€˜π‘Ÿ)
9 c0g 17385 . . . . . . 7 class 0g
108, 9cfv 6544 . . . . . 6 class (0gβ€˜(Poly1β€˜π‘Ÿ))
115, 10wne 2941 . . . . 5 wff 𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ))
12 cdg1 25569 . . . . . . . . 9 class deg1
136, 12cfv 6544 . . . . . . . 8 class ( deg1 β€˜π‘Ÿ)
145, 13cfv 6544 . . . . . . 7 class (( deg1 β€˜π‘Ÿ)β€˜π‘“)
15 cco1 21702 . . . . . . . 8 class coe1
165, 15cfv 6544 . . . . . . 7 class (coe1β€˜π‘“)
1714, 16cfv 6544 . . . . . 6 class ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“))
18 cui 20169 . . . . . . 7 class Unit
196, 18cfv 6544 . . . . . 6 class (Unitβ€˜π‘Ÿ)
2017, 19wcel 2107 . . . . 5 wff ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ)
2111, 20wa 397 . . . 4 wff (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))
22 cbs 17144 . . . . 5 class Base
238, 22cfv 6544 . . . 4 class (Baseβ€˜(Poly1β€˜π‘Ÿ))
2421, 4, 23crab 3433 . . 3 class {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))}
252, 3, 24cmpt 5232 . 2 class (π‘Ÿ ∈ V ↦ {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))})
261, 25wceq 1542 1 wff Unic1p = (π‘Ÿ ∈ V ↦ {𝑓 ∈ (Baseβ€˜(Poly1β€˜π‘Ÿ)) ∣ (𝑓 β‰  (0gβ€˜(Poly1β€˜π‘Ÿ)) ∧ ((coe1β€˜π‘“)β€˜(( deg1 β€˜π‘Ÿ)β€˜π‘“)) ∈ (Unitβ€˜π‘Ÿ))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  25657
  Copyright terms: Public domain W3C validator