MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 25201
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 25207. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 25196 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3422 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1538 . . . . . 6 class 𝑓
62cv 1538 . . . . . . . 8 class 𝑟
7 cpl1 21258 . . . . . . . 8 class Poly1
86, 7cfv 6418 . . . . . . 7 class (Poly1𝑟)
9 c0g 17067 . . . . . . 7 class 0g
108, 9cfv 6418 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2942 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 25121 . . . . . . . . 9 class deg1
136, 12cfv 6418 . . . . . . . 8 class ( deg1𝑟)
145, 13cfv 6418 . . . . . . 7 class (( deg1𝑟)‘𝑓)
15 cco1 21259 . . . . . . . 8 class coe1
165, 15cfv 6418 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6418 . . . . . 6 class ((coe1𝑓)‘(( deg1𝑟)‘𝑓))
18 cui 19796 . . . . . . 7 class Unit
196, 18cfv 6418 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2108 . . . . 5 wff ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 16840 . . . . 5 class Base
238, 22cfv 6418 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3067 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5153 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1539 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  25209
  Copyright terms: Public domain W3C validator