MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26191
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26197. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26186 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3488 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1536 . . . . . 6 class 𝑓
62cv 1536 . . . . . . . 8 class 𝑟
7 cpl1 22199 . . . . . . . 8 class Poly1
86, 7cfv 6573 . . . . . . 7 class (Poly1𝑟)
9 c0g 17499 . . . . . . 7 class 0g
108, 9cfv 6573 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2946 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 26113 . . . . . . . . 9 class deg1
136, 12cfv 6573 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6573 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22200 . . . . . . . 8 class coe1
165, 15cfv 6573 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6573 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20381 . . . . . . 7 class Unit
196, 18cfv 6573 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2108 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17258 . . . . 5 class Base
238, 22cfv 6573 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3443 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5249 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1537 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26199
  Copyright terms: Public domain W3C validator