MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 24408
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 24414. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 24403 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3436 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1521 . . . . . 6 class 𝑓
62cv 1521 . . . . . . . 8 class 𝑟
7 cpl1 20028 . . . . . . . 8 class Poly1
86, 7cfv 6228 . . . . . . 7 class (Poly1𝑟)
9 c0g 16542 . . . . . . 7 class 0g
108, 9cfv 6228 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2983 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 24331 . . . . . . . . 9 class deg1
136, 12cfv 6228 . . . . . . . 8 class ( deg1𝑟)
145, 13cfv 6228 . . . . . . 7 class (( deg1𝑟)‘𝑓)
15 cco1 20029 . . . . . . . 8 class coe1
165, 15cfv 6228 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6228 . . . . . 6 class ((coe1𝑓)‘(( deg1𝑟)‘𝑓))
18 cui 19079 . . . . . . 7 class Unit
196, 18cfv 6228 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2080 . . . . 5 wff ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 396 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 16312 . . . . 5 class Base
238, 22cfv 6228 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3108 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5043 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1522 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  24416
  Copyright terms: Public domain W3C validator