MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26064
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26070. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26059 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3436 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1540 . . . . . 6 class 𝑓
62cv 1540 . . . . . . . 8 class 𝑟
7 cpl1 22089 . . . . . . . 8 class Poly1
86, 7cfv 6481 . . . . . . 7 class (Poly1𝑟)
9 c0g 17343 . . . . . . 7 class 0g
108, 9cfv 6481 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2928 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 25986 . . . . . . . . 9 class deg1
136, 12cfv 6481 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6481 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22090 . . . . . . . 8 class coe1
165, 15cfv 6481 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6481 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20273 . . . . . . 7 class Unit
196, 18cfv 6481 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2111 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17120 . . . . 5 class Base
238, 22cfv 6481 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3395 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5170 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1541 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26072
  Copyright terms: Public domain W3C validator