Step | Hyp | Ref
| Expression |
1 | | cuc1p 25643 |
. 2
class
Unic1p |
2 | | vr |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vf |
. . . . . . 7
setvar π |
5 | 4 | cv 1540 |
. . . . . 6
class π |
6 | 2 | cv 1540 |
. . . . . . . 8
class π |
7 | | cpl1 21700 |
. . . . . . . 8
class
Poly1 |
8 | 6, 7 | cfv 6543 |
. . . . . . 7
class
(Poly1βπ) |
9 | | c0g 17384 |
. . . . . . 7
class
0g |
10 | 8, 9 | cfv 6543 |
. . . . . 6
class
(0gβ(Poly1βπ)) |
11 | 5, 10 | wne 2940 |
. . . . 5
wff π β
(0gβ(Poly1βπ)) |
12 | | cdg1 25568 |
. . . . . . . . 9
class
deg1 |
13 | 6, 12 | cfv 6543 |
. . . . . . . 8
class (
deg1 βπ) |
14 | 5, 13 | cfv 6543 |
. . . . . . 7
class ((
deg1 βπ)βπ) |
15 | | cco1 21701 |
. . . . . . . 8
class
coe1 |
16 | 5, 15 | cfv 6543 |
. . . . . . 7
class
(coe1βπ) |
17 | 14, 16 | cfv 6543 |
. . . . . 6
class
((coe1βπ)β(( deg1 βπ)βπ)) |
18 | | cui 20168 |
. . . . . . 7
class
Unit |
19 | 6, 18 | cfv 6543 |
. . . . . 6
class
(Unitβπ) |
20 | 17, 19 | wcel 2106 |
. . . . 5
wff
((coe1βπ)β(( deg1 βπ)βπ)) β (Unitβπ) |
21 | 11, 20 | wa 396 |
. . . 4
wff (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) β (Unitβπ)) |
22 | | cbs 17143 |
. . . . 5
class
Base |
23 | 8, 22 | cfv 6543 |
. . . 4
class
(Baseβ(Poly1βπ)) |
24 | 21, 4, 23 | crab 3432 |
. . 3
class {π β
(Baseβ(Poly1βπ)) β£ (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) β (Unitβπ))} |
25 | 2, 3, 24 | cmpt 5231 |
. 2
class (π β V β¦ {π β
(Baseβ(Poly1βπ)) β£ (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) β (Unitβπ))}) |
26 | 1, 25 | wceq 1541 |
1
wff
Unic1p = (π β V β¦ {π β
(Baseβ(Poly1βπ)) β£ (π β
(0gβ(Poly1βπ)) β§ ((coe1βπ)β(( deg1
βπ)βπ)) β (Unitβπ))}) |