MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uc1p Structured version   Visualization version   GIF version

Definition df-uc1p 26171
Description: Define the set of unitic univariate polynomials, as the polynomials with an invertible leading coefficient. This is not a standard concept but is useful to us as the set of polynomials which can be used as the divisor in the polynomial division theorem ply1divalg 26177. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-uc1p Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Distinct variable group:   𝑓,𝑟

Detailed syntax breakdown of Definition df-uc1p
StepHypRef Expression
1 cuc1p 26166 . 2 class Unic1p
2 vr . . 3 setvar 𝑟
3 cvv 3480 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . 8 class 𝑟
7 cpl1 22178 . . . . . . . 8 class Poly1
86, 7cfv 6561 . . . . . . 7 class (Poly1𝑟)
9 c0g 17484 . . . . . . 7 class 0g
108, 9cfv 6561 . . . . . 6 class (0g‘(Poly1𝑟))
115, 10wne 2940 . . . . 5 wff 𝑓 ≠ (0g‘(Poly1𝑟))
12 cdg1 26093 . . . . . . . . 9 class deg1
136, 12cfv 6561 . . . . . . . 8 class (deg1𝑟)
145, 13cfv 6561 . . . . . . 7 class ((deg1𝑟)‘𝑓)
15 cco1 22179 . . . . . . . 8 class coe1
165, 15cfv 6561 . . . . . . 7 class (coe1𝑓)
1714, 16cfv 6561 . . . . . 6 class ((coe1𝑓)‘((deg1𝑟)‘𝑓))
18 cui 20355 . . . . . . 7 class Unit
196, 18cfv 6561 . . . . . 6 class (Unit‘𝑟)
2017, 19wcel 2108 . . . . 5 wff ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)
2111, 20wa 395 . . . 4 wff (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))
22 cbs 17247 . . . . 5 class Base
238, 22cfv 6561 . . . 4 class (Base‘(Poly1𝑟))
2421, 4, 23crab 3436 . . 3 class {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))}
252, 3, 24cmpt 5225 . 2 class (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
261, 25wceq 1540 1 wff Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
Colors of variables: wff setvar class
This definition is referenced by:  uc1pval  26179
  Copyright terms: Public domain W3C validator