MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pval Structured version   Visualization version   GIF version

Theorem mon1pval 25659
Description: Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
mon1pval.m 𝑀 = (Monic1p𝑅)
mon1pval.o 1 = (1r𝑅)
Assertion
Ref Expression
mon1pval 𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   1 ,𝑓   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑀(𝑓)

Proof of Theorem mon1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mon1pval.m . 2 𝑀 = (Monic1p𝑅)
2 fveq2 6892 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3eqtr4di 2791 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6896 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2791 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6896 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9eqtr4di 2791 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 3002 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6892 . . . . . . . . . 10 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
1412, 13eqtr4di 2791 . . . . . . . . 9 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1514fveq1d 6894 . . . . . . . 8 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6896 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6892 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
18 mon1pval.o . . . . . . . 8 1 = (1r𝑅)
1917, 18eqtr4di 2791 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2016, 19eqeq12d 2749 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) = 1 ))
2111, 20anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )))
227, 21rabeqbidv 3450 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
23 df-mon1 25648 . . . 4 Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟))})
246fvexi 6906 . . . . 5 𝐵 ∈ V
2524rabex 5333 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ∈ V
2622, 23, 25fvmpt 6999 . . 3 (𝑅 ∈ V → (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
27 fvprc 6884 . . . 4 𝑅 ∈ V → (Monic1p𝑅) = ∅)
28 ssrab2 4078 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ 𝐵
29 fvprc 6884 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29eqtrid 2785 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6896 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
326, 31eqtrid 2785 . . . . . . 7 𝑅 ∈ V → 𝐵 = (Base‘∅))
33 base0 17149 . . . . . . 7 ∅ = (Base‘∅)
3432, 33eqtr4di 2791 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 4035 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ ∅)
36 ss0 4399 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} = ∅)
3827, 37eqtr4d 2776 . . 3 𝑅 ∈ V → (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
3926, 38pm2.61i 182 . 2 (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
401, 39eqtri 2761 1 𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  wss 3949  c0 4323  cfv 6544  Basecbs 17144  0gc0g 17385  1rcur 20004  Poly1cpl1 21701  coe1cco1 21702   deg1 cdg1 25569  Monic1pcmn1 25643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-nn 12213  df-slot 17115  df-ndx 17127  df-base 17145  df-mon1 25648
This theorem is referenced by:  ismon1p  25660
  Copyright terms: Public domain W3C validator