MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pval Structured version   Visualization version   GIF version

Theorem mon1pval 25211
Description: Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
mon1pval.m 𝑀 = (Monic1p𝑅)
mon1pval.o 1 = (1r𝑅)
Assertion
Ref Expression
mon1pval 𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   1 ,𝑓   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑀(𝑓)

Proof of Theorem mon1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mon1pval.m . 2 𝑀 = (Monic1p𝑅)
2 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6760 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6eqtr4di 2797 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6760 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 3003 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6756 . . . . . . . . . 10 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
1412, 13eqtr4di 2797 . . . . . . . . 9 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1514fveq1d 6758 . . . . . . . 8 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6760 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
18 mon1pval.o . . . . . . . 8 1 = (1r𝑅)
1917, 18eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2016, 19eqeq12d 2754 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) = 1 ))
2111, 20anbi12d 630 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )))
227, 21rabeqbidv 3410 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
23 df-mon1 25200 . . . 4 Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = (1r𝑟))})
246fvexi 6770 . . . . 5 𝐵 ∈ V
2524rabex 5251 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ∈ V
2622, 23, 25fvmpt 6857 . . 3 (𝑅 ∈ V → (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
27 fvprc 6748 . . . 4 𝑅 ∈ V → (Monic1p𝑅) = ∅)
28 ssrab2 4009 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ 𝐵
29 fvprc 6748 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29syl5eq 2791 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6760 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
326, 31syl5eq 2791 . . . . . . 7 𝑅 ∈ V → 𝐵 = (Base‘∅))
33 base0 16845 . . . . . . 7 ∅ = (Base‘∅)
3432, 33eqtr4di 2797 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 3969 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ ∅)
36 ss0 4329 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )} = ∅)
3827, 37eqtr4d 2781 . . 3 𝑅 ∈ V → (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )})
3926, 38pm2.61i 182 . 2 (Monic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
401, 39eqtri 2766 1 𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  cfv 6418  Basecbs 16840  0gc0g 17067  1rcur 19652  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121  Monic1pcmn1 25195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841  df-mon1 25200
This theorem is referenced by:  ismon1p  25212
  Copyright terms: Public domain W3C validator