Detailed syntax breakdown of Definition df-mtree
Step | Hyp | Ref
| Expression |
1 | | cmtree 33553 |
. 2
class
mTree |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vd |
. . . 4
setvar 𝑑 |
5 | | vh |
. . . 4
setvar ℎ |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
7 | | cmdv 33430 |
. . . . . 6
class
mDV |
8 | 6, 7 | cfv 6433 |
. . . . 5
class
(mDV‘𝑡) |
9 | 8 | cpw 4533 |
. . . 4
class 𝒫
(mDV‘𝑡) |
10 | | cmex 33429 |
. . . . . 6
class
mEx |
11 | 6, 10 | cfv 6433 |
. . . . 5
class
(mEx‘𝑡) |
12 | 11 | cpw 4533 |
. . . 4
class 𝒫
(mEx‘𝑡) |
13 | | ve |
. . . . . . . . . 10
setvar 𝑒 |
14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑒 |
15 | | cm0s 33547 |
. . . . . . . . . . 11
class
m0St |
16 | 14, 15 | cfv 6433 |
. . . . . . . . . 10
class
(m0St‘𝑒) |
17 | | c0 4256 |
. . . . . . . . . 10
class
∅ |
18 | 16, 17 | cop 4567 |
. . . . . . . . 9
class
〈(m0St‘𝑒), ∅〉 |
19 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
20 | 19 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
21 | 14, 18, 20 | wbr 5074 |
. . . . . . . 8
wff 𝑒𝑟〈(m0St‘𝑒), ∅〉 |
22 | | cmvh 33434 |
. . . . . . . . . 10
class
mVH |
23 | 6, 22 | cfv 6433 |
. . . . . . . . 9
class
(mVH‘𝑡) |
24 | 23 | crn 5590 |
. . . . . . . 8
class ran
(mVH‘𝑡) |
25 | 21, 13, 24 | wral 3064 |
. . . . . . 7
wff
∀𝑒 ∈ ran
(mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 |
26 | 4 | cv 1538 |
. . . . . . . . . . . 12
class 𝑑 |
27 | 5 | cv 1538 |
. . . . . . . . . . . 12
class ℎ |
28 | 26, 27, 14 | cotp 4569 |
. . . . . . . . . . 11
class
〈𝑑, ℎ, 𝑒〉 |
29 | | cmsr 33436 |
. . . . . . . . . . . 12
class
mStRed |
30 | 6, 29 | cfv 6433 |
. . . . . . . . . . 11
class
(mStRed‘𝑡) |
31 | 28, 30 | cfv 6433 |
. . . . . . . . . 10
class
((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉) |
32 | 31, 17 | cop 4567 |
. . . . . . . . 9
class
〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
33 | 14, 32, 20 | wbr 5074 |
. . . . . . . 8
wff 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
34 | 33, 13, 27 | wral 3064 |
. . . . . . 7
wff
∀𝑒 ∈
ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
35 | | vm |
. . . . . . . . . . . . . 14
setvar 𝑚 |
36 | 35 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
37 | | vo |
. . . . . . . . . . . . . 14
setvar 𝑜 |
38 | 37 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑜 |
39 | | vp |
. . . . . . . . . . . . . 14
setvar 𝑝 |
40 | 39 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑝 |
41 | 36, 38, 40 | cotp 4569 |
. . . . . . . . . . . 12
class
〈𝑚, 𝑜, 𝑝〉 |
42 | | cmax 33427 |
. . . . . . . . . . . . 13
class
mAx |
43 | 6, 42 | cfv 6433 |
. . . . . . . . . . . 12
class
(mAx‘𝑡) |
44 | 41, 43 | wcel 2106 |
. . . . . . . . . . 11
wff 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) |
45 | | vx |
. . . . . . . . . . . . . . . . . 18
setvar 𝑥 |
46 | 45 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑥 |
47 | | vy |
. . . . . . . . . . . . . . . . . 18
setvar 𝑦 |
48 | 47 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑦 |
49 | 46, 48, 36 | wbr 5074 |
. . . . . . . . . . . . . . . 16
wff 𝑥𝑚𝑦 |
50 | 46, 23 | cfv 6433 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVH‘𝑡)‘𝑥) |
51 | | vs |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑠 |
52 | 51 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑠 |
53 | 50, 52 | cfv 6433 |
. . . . . . . . . . . . . . . . . . 19
class (𝑠‘((mVH‘𝑡)‘𝑥)) |
54 | | cmvrs 33431 |
. . . . . . . . . . . . . . . . . . . 20
class
mVars |
55 | 6, 54 | cfv 6433 |
. . . . . . . . . . . . . . . . . . 19
class
(mVars‘𝑡) |
56 | 53, 55 | cfv 6433 |
. . . . . . . . . . . . . . . . . 18
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) |
57 | 48, 23 | cfv 6433 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVH‘𝑡)‘𝑦) |
58 | 57, 52 | cfv 6433 |
. . . . . . . . . . . . . . . . . . 19
class (𝑠‘((mVH‘𝑡)‘𝑦)) |
59 | 58, 55 | cfv 6433 |
. . . . . . . . . . . . . . . . . 18
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) |
60 | 56, 59 | cxp 5587 |
. . . . . . . . . . . . . . . . 17
class
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) |
61 | 60, 26 | wss 3887 |
. . . . . . . . . . . . . . . 16
wff
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 |
62 | 49, 61 | wi 4 |
. . . . . . . . . . . . . . 15
wff (𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
63 | 62, 47 | wal 1537 |
. . . . . . . . . . . . . 14
wff
∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
64 | 63, 45 | wal 1537 |
. . . . . . . . . . . . 13
wff
∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
65 | 40, 52 | cfv 6433 |
. . . . . . . . . . . . . . . 16
class (𝑠‘𝑝) |
66 | 65 | csn 4561 |
. . . . . . . . . . . . . . 15
class {(𝑠‘𝑝)} |
67 | 40 | csn 4561 |
. . . . . . . . . . . . . . . . . . . . 21
class {𝑝} |
68 | 38, 67 | cun 3885 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑜 ∪ {𝑝}) |
69 | 55, 68 | cima 5592 |
. . . . . . . . . . . . . . . . . . 19
class
((mVars‘𝑡)
“ (𝑜 ∪ {𝑝})) |
70 | 69 | cuni 4839 |
. . . . . . . . . . . . . . . . . 18
class ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝})) |
71 | 23, 70 | cima 5592 |
. . . . . . . . . . . . . . . . 17
class
((mVH‘𝑡)
“ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))) |
72 | 38, 71 | cun 3885 |
. . . . . . . . . . . . . . . 16
class (𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝})))) |
73 | 14, 52 | cfv 6433 |
. . . . . . . . . . . . . . . . . 18
class (𝑠‘𝑒) |
74 | 73 | csn 4561 |
. . . . . . . . . . . . . . . . 17
class {(𝑠‘𝑒)} |
75 | 20, 74 | cima 5592 |
. . . . . . . . . . . . . . . 16
class (𝑟 “ {(𝑠‘𝑒)}) |
76 | 13, 72, 75 | cixp 8685 |
. . . . . . . . . . . . . . 15
class X𝑒 ∈
(𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)}) |
77 | 66, 76 | cxp 5587 |
. . . . . . . . . . . . . 14
class ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) |
78 | 77, 20 | wss 3887 |
. . . . . . . . . . . . 13
wff ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟 |
79 | 64, 78 | wi 4 |
. . . . . . . . . . . 12
wff
(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟) |
80 | | cmsub 33433 |
. . . . . . . . . . . . . 14
class
mSubst |
81 | 6, 80 | cfv 6433 |
. . . . . . . . . . . . 13
class
(mSubst‘𝑡) |
82 | 81 | crn 5590 |
. . . . . . . . . . . 12
class ran
(mSubst‘𝑡) |
83 | 79, 51, 82 | wral 3064 |
. . . . . . . . . . 11
wff
∀𝑠 ∈ ran
(mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟) |
84 | 44, 83 | wi 4 |
. . . . . . . . . 10
wff
(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
85 | 84, 39 | wal 1537 |
. . . . . . . . 9
wff
∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
86 | 85, 37 | wal 1537 |
. . . . . . . 8
wff
∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
87 | 86, 35 | wal 1537 |
. . . . . . 7
wff
∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
88 | 25, 34, 87 | w3a 1086 |
. . . . . 6
wff
(∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟))) |
89 | 88, 19 | cab 2715 |
. . . . 5
class {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))} |
90 | 89 | cint 4879 |
. . . 4
class ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))} |
91 | 4, 5, 9, 12, 90 | cmpo 7277 |
. . 3
class (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))}) |
92 | 2, 3, 91 | cmpt 5157 |
. 2
class (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |
93 | 1, 92 | wceq 1539 |
1
wff mTree =
(𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |