Detailed syntax breakdown of Definition df-mtree
| Step | Hyp | Ref
| Expression |
| 1 | | cmtree 35533 |
. 2
class
mTree |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vd |
. . . 4
setvar 𝑑 |
| 5 | | vh |
. . . 4
setvar ℎ |
| 6 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
| 7 | | cmdv 35410 |
. . . . . 6
class
mDV |
| 8 | 6, 7 | cfv 6542 |
. . . . 5
class
(mDV‘𝑡) |
| 9 | 8 | cpw 4582 |
. . . 4
class 𝒫
(mDV‘𝑡) |
| 10 | | cmex 35409 |
. . . . . 6
class
mEx |
| 11 | 6, 10 | cfv 6542 |
. . . . 5
class
(mEx‘𝑡) |
| 12 | 11 | cpw 4582 |
. . . 4
class 𝒫
(mEx‘𝑡) |
| 13 | | ve |
. . . . . . . . . 10
setvar 𝑒 |
| 14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑒 |
| 15 | | cm0s 35527 |
. . . . . . . . . . 11
class
m0St |
| 16 | 14, 15 | cfv 6542 |
. . . . . . . . . 10
class
(m0St‘𝑒) |
| 17 | | c0 4315 |
. . . . . . . . . 10
class
∅ |
| 18 | 16, 17 | cop 4614 |
. . . . . . . . 9
class
〈(m0St‘𝑒), ∅〉 |
| 19 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
| 20 | 19 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
| 21 | 14, 18, 20 | wbr 5125 |
. . . . . . . 8
wff 𝑒𝑟〈(m0St‘𝑒), ∅〉 |
| 22 | | cmvh 35414 |
. . . . . . . . . 10
class
mVH |
| 23 | 6, 22 | cfv 6542 |
. . . . . . . . 9
class
(mVH‘𝑡) |
| 24 | 23 | crn 5668 |
. . . . . . . 8
class ran
(mVH‘𝑡) |
| 25 | 21, 13, 24 | wral 3050 |
. . . . . . 7
wff
∀𝑒 ∈ ran
(mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 |
| 26 | 4 | cv 1538 |
. . . . . . . . . . . 12
class 𝑑 |
| 27 | 5 | cv 1538 |
. . . . . . . . . . . 12
class ℎ |
| 28 | 26, 27, 14 | cotp 4616 |
. . . . . . . . . . 11
class
〈𝑑, ℎ, 𝑒〉 |
| 29 | | cmsr 35416 |
. . . . . . . . . . . 12
class
mStRed |
| 30 | 6, 29 | cfv 6542 |
. . . . . . . . . . 11
class
(mStRed‘𝑡) |
| 31 | 28, 30 | cfv 6542 |
. . . . . . . . . 10
class
((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉) |
| 32 | 31, 17 | cop 4614 |
. . . . . . . . 9
class
〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
| 33 | 14, 32, 20 | wbr 5125 |
. . . . . . . 8
wff 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
| 34 | 33, 13, 27 | wral 3050 |
. . . . . . 7
wff
∀𝑒 ∈
ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 |
| 35 | | vm |
. . . . . . . . . . . . . 14
setvar 𝑚 |
| 36 | 35 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
| 37 | | vo |
. . . . . . . . . . . . . 14
setvar 𝑜 |
| 38 | 37 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑜 |
| 39 | | vp |
. . . . . . . . . . . . . 14
setvar 𝑝 |
| 40 | 39 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑝 |
| 41 | 36, 38, 40 | cotp 4616 |
. . . . . . . . . . . 12
class
〈𝑚, 𝑜, 𝑝〉 |
| 42 | | cmax 35407 |
. . . . . . . . . . . . 13
class
mAx |
| 43 | 6, 42 | cfv 6542 |
. . . . . . . . . . . 12
class
(mAx‘𝑡) |
| 44 | 41, 43 | wcel 2107 |
. . . . . . . . . . 11
wff 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) |
| 45 | | vx |
. . . . . . . . . . . . . . . . . 18
setvar 𝑥 |
| 46 | 45 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑥 |
| 47 | | vy |
. . . . . . . . . . . . . . . . . 18
setvar 𝑦 |
| 48 | 47 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑦 |
| 49 | 46, 48, 36 | wbr 5125 |
. . . . . . . . . . . . . . . 16
wff 𝑥𝑚𝑦 |
| 50 | 46, 23 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVH‘𝑡)‘𝑥) |
| 51 | | vs |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑠 |
| 52 | 51 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑠 |
| 53 | 50, 52 | cfv 6542 |
. . . . . . . . . . . . . . . . . . 19
class (𝑠‘((mVH‘𝑡)‘𝑥)) |
| 54 | | cmvrs 35411 |
. . . . . . . . . . . . . . . . . . . 20
class
mVars |
| 55 | 6, 54 | cfv 6542 |
. . . . . . . . . . . . . . . . . . 19
class
(mVars‘𝑡) |
| 56 | 53, 55 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) |
| 57 | 48, 23 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVH‘𝑡)‘𝑦) |
| 58 | 57, 52 | cfv 6542 |
. . . . . . . . . . . . . . . . . . 19
class (𝑠‘((mVH‘𝑡)‘𝑦)) |
| 59 | 58, 55 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class
((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦))) |
| 60 | 56, 59 | cxp 5665 |
. . . . . . . . . . . . . . . . 17
class
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) |
| 61 | 60, 26 | wss 3933 |
. . . . . . . . . . . . . . . 16
wff
(((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑 |
| 62 | 49, 61 | wi 4 |
. . . . . . . . . . . . . . 15
wff (𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 63 | 62, 47 | wal 1537 |
. . . . . . . . . . . . . 14
wff
∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 64 | 63, 45 | wal 1537 |
. . . . . . . . . . . . 13
wff
∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) |
| 65 | 40, 52 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class (𝑠‘𝑝) |
| 66 | 65 | csn 4608 |
. . . . . . . . . . . . . . 15
class {(𝑠‘𝑝)} |
| 67 | 40 | csn 4608 |
. . . . . . . . . . . . . . . . . . . . 21
class {𝑝} |
| 68 | 38, 67 | cun 3931 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑜 ∪ {𝑝}) |
| 69 | 55, 68 | cima 5670 |
. . . . . . . . . . . . . . . . . . 19
class
((mVars‘𝑡)
“ (𝑜 ∪ {𝑝})) |
| 70 | 69 | cuni 4889 |
. . . . . . . . . . . . . . . . . 18
class ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝})) |
| 71 | 23, 70 | cima 5670 |
. . . . . . . . . . . . . . . . 17
class
((mVH‘𝑡)
“ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))) |
| 72 | 38, 71 | cun 3931 |
. . . . . . . . . . . . . . . 16
class (𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝})))) |
| 73 | 14, 52 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑠‘𝑒) |
| 74 | 73 | csn 4608 |
. . . . . . . . . . . . . . . . 17
class {(𝑠‘𝑒)} |
| 75 | 20, 74 | cima 5670 |
. . . . . . . . . . . . . . . 16
class (𝑟 “ {(𝑠‘𝑒)}) |
| 76 | 13, 72, 75 | cixp 8920 |
. . . . . . . . . . . . . . 15
class X𝑒 ∈
(𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)}) |
| 77 | 66, 76 | cxp 5665 |
. . . . . . . . . . . . . 14
class ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) |
| 78 | 77, 20 | wss 3933 |
. . . . . . . . . . . . 13
wff ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟 |
| 79 | 64, 78 | wi 4 |
. . . . . . . . . . . 12
wff
(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟) |
| 80 | | cmsub 35413 |
. . . . . . . . . . . . . 14
class
mSubst |
| 81 | 6, 80 | cfv 6542 |
. . . . . . . . . . . . 13
class
(mSubst‘𝑡) |
| 82 | 81 | crn 5668 |
. . . . . . . . . . . 12
class ran
(mSubst‘𝑡) |
| 83 | 79, 51, 82 | wral 3050 |
. . . . . . . . . . 11
wff
∀𝑠 ∈ ran
(mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟) |
| 84 | 44, 83 | wi 4 |
. . . . . . . . . 10
wff
(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
| 85 | 84, 39 | wal 1537 |
. . . . . . . . 9
wff
∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
| 86 | 85, 37 | wal 1537 |
. . . . . . . 8
wff
∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
| 87 | 86, 35 | wal 1537 |
. . . . . . 7
wff
∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)) |
| 88 | 25, 34, 87 | w3a 1086 |
. . . . . 6
wff
(∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟))) |
| 89 | 88, 19 | cab 2712 |
. . . . 5
class {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))} |
| 90 | 89 | cint 4928 |
. . . 4
class ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))} |
| 91 | 4, 5, 9, 12, 90 | cmpo 7416 |
. . 3
class (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))}) |
| 92 | 2, 3, 91 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |
| 93 | 1, 92 | wceq 1539 |
1
wff mTree =
(𝑡 ∈ V ↦ (𝑑 ∈ 𝒫
(mDV‘𝑡), ℎ ∈ 𝒫
(mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |