Step | Hyp | Ref
| Expression |
1 | | cmtree 34577 |
. 2
class
mTree |
2 | | vt |
. . 3
setvar π‘ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vd |
. . . 4
setvar π |
5 | | vh |
. . . 4
setvar β |
6 | 2 | cv 1540 |
. . . . . 6
class π‘ |
7 | | cmdv 34454 |
. . . . . 6
class
mDV |
8 | 6, 7 | cfv 6543 |
. . . . 5
class
(mDVβπ‘) |
9 | 8 | cpw 4602 |
. . . 4
class π«
(mDVβπ‘) |
10 | | cmex 34453 |
. . . . . 6
class
mEx |
11 | 6, 10 | cfv 6543 |
. . . . 5
class
(mExβπ‘) |
12 | 11 | cpw 4602 |
. . . 4
class π«
(mExβπ‘) |
13 | | ve |
. . . . . . . . . 10
setvar π |
14 | 13 | cv 1540 |
. . . . . . . . 9
class π |
15 | | cm0s 34571 |
. . . . . . . . . . 11
class
m0St |
16 | 14, 15 | cfv 6543 |
. . . . . . . . . 10
class
(m0Stβπ) |
17 | | c0 4322 |
. . . . . . . . . 10
class
β
|
18 | 16, 17 | cop 4634 |
. . . . . . . . 9
class
β¨(m0Stβπ), β
β© |
19 | | vr |
. . . . . . . . . 10
setvar π |
20 | 19 | cv 1540 |
. . . . . . . . 9
class π |
21 | 14, 18, 20 | wbr 5148 |
. . . . . . . 8
wff ππβ¨(m0Stβπ), β
β© |
22 | | cmvh 34458 |
. . . . . . . . . 10
class
mVH |
23 | 6, 22 | cfv 6543 |
. . . . . . . . 9
class
(mVHβπ‘) |
24 | 23 | crn 5677 |
. . . . . . . 8
class ran
(mVHβπ‘) |
25 | 21, 13, 24 | wral 3061 |
. . . . . . 7
wff
βπ β ran
(mVHβπ‘)ππβ¨(m0Stβπ), β
β© |
26 | 4 | cv 1540 |
. . . . . . . . . . . 12
class π |
27 | 5 | cv 1540 |
. . . . . . . . . . . 12
class β |
28 | 26, 27, 14 | cotp 4636 |
. . . . . . . . . . 11
class
β¨π, β, πβ© |
29 | | cmsr 34460 |
. . . . . . . . . . . 12
class
mStRed |
30 | 6, 29 | cfv 6543 |
. . . . . . . . . . 11
class
(mStRedβπ‘) |
31 | 28, 30 | cfv 6543 |
. . . . . . . . . 10
class
((mStRedβπ‘)ββ¨π, β, πβ©) |
32 | 31, 17 | cop 4634 |
. . . . . . . . 9
class
β¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© |
33 | 14, 32, 20 | wbr 5148 |
. . . . . . . 8
wff ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© |
34 | 33, 13, 27 | wral 3061 |
. . . . . . 7
wff
βπ β
β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© |
35 | | vm |
. . . . . . . . . . . . . 14
setvar π |
36 | 35 | cv 1540 |
. . . . . . . . . . . . 13
class π |
37 | | vo |
. . . . . . . . . . . . . 14
setvar π |
38 | 37 | cv 1540 |
. . . . . . . . . . . . 13
class π |
39 | | vp |
. . . . . . . . . . . . . 14
setvar π |
40 | 39 | cv 1540 |
. . . . . . . . . . . . 13
class π |
41 | 36, 38, 40 | cotp 4636 |
. . . . . . . . . . . 12
class
β¨π, π, πβ© |
42 | | cmax 34451 |
. . . . . . . . . . . . 13
class
mAx |
43 | 6, 42 | cfv 6543 |
. . . . . . . . . . . 12
class
(mAxβπ‘) |
44 | 41, 43 | wcel 2106 |
. . . . . . . . . . 11
wff β¨π, π, πβ© β (mAxβπ‘) |
45 | | vx |
. . . . . . . . . . . . . . . . . 18
setvar π₯ |
46 | 45 | cv 1540 |
. . . . . . . . . . . . . . . . 17
class π₯ |
47 | | vy |
. . . . . . . . . . . . . . . . . 18
setvar π¦ |
48 | 47 | cv 1540 |
. . . . . . . . . . . . . . . . 17
class π¦ |
49 | 46, 48, 36 | wbr 5148 |
. . . . . . . . . . . . . . . 16
wff π₯ππ¦ |
50 | 46, 23 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVHβπ‘)βπ₯) |
51 | | vs |
. . . . . . . . . . . . . . . . . . . . 21
setvar π |
52 | 51 | cv 1540 |
. . . . . . . . . . . . . . . . . . . 20
class π |
53 | 50, 52 | cfv 6543 |
. . . . . . . . . . . . . . . . . . 19
class (π β((mVHβπ‘)βπ₯)) |
54 | | cmvrs 34455 |
. . . . . . . . . . . . . . . . . . . 20
class
mVars |
55 | 6, 54 | cfv 6543 |
. . . . . . . . . . . . . . . . . . 19
class
(mVarsβπ‘) |
56 | 53, 55 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class
((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) |
57 | 48, 23 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . 20
class
((mVHβπ‘)βπ¦) |
58 | 57, 52 | cfv 6543 |
. . . . . . . . . . . . . . . . . . 19
class (π β((mVHβπ‘)βπ¦)) |
59 | 58, 55 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class
((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦))) |
60 | 56, 59 | cxp 5674 |
. . . . . . . . . . . . . . . . 17
class
(((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) |
61 | 60, 26 | wss 3948 |
. . . . . . . . . . . . . . . 16
wff
(((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π |
62 | 49, 61 | wi 4 |
. . . . . . . . . . . . . . 15
wff (π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) |
63 | 62, 47 | wal 1539 |
. . . . . . . . . . . . . 14
wff
βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) |
64 | 63, 45 | wal 1539 |
. . . . . . . . . . . . 13
wff
βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) |
65 | 40, 52 | cfv 6543 |
. . . . . . . . . . . . . . . 16
class (π βπ) |
66 | 65 | csn 4628 |
. . . . . . . . . . . . . . 15
class {(π βπ)} |
67 | 40 | csn 4628 |
. . . . . . . . . . . . . . . . . . . . 21
class {π} |
68 | 38, 67 | cun 3946 |
. . . . . . . . . . . . . . . . . . . 20
class (π βͺ {π}) |
69 | 55, 68 | cima 5679 |
. . . . . . . . . . . . . . . . . . 19
class
((mVarsβπ‘)
β (π βͺ {π})) |
70 | 69 | cuni 4908 |
. . . . . . . . . . . . . . . . . 18
class βͺ ((mVarsβπ‘) β (π βͺ {π})) |
71 | 23, 70 | cima 5679 |
. . . . . . . . . . . . . . . . 17
class
((mVHβπ‘)
β βͺ ((mVarsβπ‘) β (π βͺ {π}))) |
72 | 38, 71 | cun 3946 |
. . . . . . . . . . . . . . . 16
class (π βͺ ((mVHβπ‘) β βͺ ((mVarsβπ‘) β (π βͺ {π})))) |
73 | 14, 52 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class (π βπ) |
74 | 73 | csn 4628 |
. . . . . . . . . . . . . . . . 17
class {(π βπ)} |
75 | 20, 74 | cima 5679 |
. . . . . . . . . . . . . . . 16
class (π β {(π βπ)}) |
76 | 13, 72, 75 | cixp 8890 |
. . . . . . . . . . . . . . 15
class Xπ β
(π βͺ ((mVHβπ‘) β βͺ ((mVarsβπ‘) β (π βͺ {π}))))(π β {(π βπ)}) |
77 | 66, 76 | cxp 5674 |
. . . . . . . . . . . . . 14
class ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) |
78 | 77, 20 | wss 3948 |
. . . . . . . . . . . . 13
wff ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π |
79 | 64, 78 | wi 4 |
. . . . . . . . . . . 12
wff
(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π) |
80 | | cmsub 34457 |
. . . . . . . . . . . . . 14
class
mSubst |
81 | 6, 80 | cfv 6543 |
. . . . . . . . . . . . 13
class
(mSubstβπ‘) |
82 | 81 | crn 5677 |
. . . . . . . . . . . 12
class ran
(mSubstβπ‘) |
83 | 79, 51, 82 | wral 3061 |
. . . . . . . . . . 11
wff
βπ β ran
(mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π) |
84 | 44, 83 | wi 4 |
. . . . . . . . . 10
wff
(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)) |
85 | 84, 39 | wal 1539 |
. . . . . . . . 9
wff
βπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)) |
86 | 85, 37 | wal 1539 |
. . . . . . . 8
wff
βπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)) |
87 | 86, 35 | wal 1539 |
. . . . . . 7
wff
βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)) |
88 | 25, 34, 87 | w3a 1087 |
. . . . . 6
wff
(βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π))) |
89 | 88, 19 | cab 2709 |
. . . . 5
class {π β£ (βπ β ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))} |
90 | 89 | cint 4950 |
. . . 4
class β© {π
β£ (βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))} |
91 | 4, 5, 9, 12, 90 | cmpo 7410 |
. . 3
class (π β π«
(mDVβπ‘), β β π«
(mExβπ‘) β¦ β© {π
β£ (βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))}) |
92 | 2, 3, 91 | cmpt 5231 |
. 2
class (π‘ β V β¦ (π β π«
(mDVβπ‘), β β π«
(mExβπ‘) β¦ β© {π
β£ (βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))})) |
93 | 1, 92 | wceq 1541 |
1
wff mTree =
(π‘ β V β¦ (π β π«
(mDVβπ‘), β β π«
(mExβπ‘) β¦ β© {π
β£ (βπ β
ran (mVHβπ‘)ππβ¨(m0Stβπ), β
β© β§ βπ β β ππβ¨((mStRedβπ‘)ββ¨π, β, πβ©), β
β© β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ‘) β βπ β ran (mSubstβπ‘)(βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ‘)β(π β((mVHβπ‘)βπ₯))) Γ ((mVarsβπ‘)β(π β((mVHβπ‘)βπ¦)))) β π) β ({(π βπ)} Γ Xπ β (π βͺ ((mVHβπ‘) β βͺ
((mVarsβπ‘) β
(π βͺ {π}))))(π β {(π βπ)})) β π)))})) |