Detailed syntax breakdown of Definition df-msub
| Step | Hyp | Ref
| Expression |
| 1 | | cmsub 35476 |
. 2
class
mSubst |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑡 |
| 6 | | cmrex 35471 |
. . . . . 6
class
mREx |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(mREx‘𝑡) |
| 8 | | cmvar 35466 |
. . . . . 6
class
mVR |
| 9 | 5, 8 | cfv 6561 |
. . . . 5
class
(mVR‘𝑡) |
| 10 | | cpm 8867 |
. . . . 5
class
↑pm |
| 11 | 7, 9, 10 | co 7431 |
. . . 4
class
((mREx‘𝑡)
↑pm (mVR‘𝑡)) |
| 12 | | ve |
. . . . 5
setvar 𝑒 |
| 13 | | cmex 35472 |
. . . . . 6
class
mEx |
| 14 | 5, 13 | cfv 6561 |
. . . . 5
class
(mEx‘𝑡) |
| 15 | 12 | cv 1539 |
. . . . . . 7
class 𝑒 |
| 16 | | c1st 8012 |
. . . . . . 7
class
1st |
| 17 | 15, 16 | cfv 6561 |
. . . . . 6
class
(1st ‘𝑒) |
| 18 | | c2nd 8013 |
. . . . . . . 8
class
2nd |
| 19 | 15, 18 | cfv 6561 |
. . . . . . 7
class
(2nd ‘𝑒) |
| 20 | 4 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 21 | | cmrsub 35475 |
. . . . . . . . 9
class
mRSubst |
| 22 | 5, 21 | cfv 6561 |
. . . . . . . 8
class
(mRSubst‘𝑡) |
| 23 | 20, 22 | cfv 6561 |
. . . . . . 7
class
((mRSubst‘𝑡)‘𝑓) |
| 24 | 19, 23 | cfv 6561 |
. . . . . 6
class
(((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒)) |
| 25 | 17, 24 | cop 4632 |
. . . . 5
class
〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉 |
| 26 | 12, 14, 25 | cmpt 5225 |
. . . 4
class (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st
‘𝑒),
(((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉) |
| 27 | 4, 11, 26 | cmpt 5225 |
. . 3
class (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st
‘𝑒),
(((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉)) |
| 28 | 2, 3, 27 | cmpt 5225 |
. 2
class (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st
‘𝑒),
(((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) |
| 29 | 1, 28 | wceq 1540 |
1
wff mSubst =
(𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st
‘𝑒),
(((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) |