Detailed syntax breakdown of Definition df-mrsub
| Step | Hyp | Ref
| Expression |
| 1 | | cmrsub 35475 |
. 2
class
mRSubst |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑡 |
| 6 | | cmrex 35471 |
. . . . . 6
class
mREx |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(mREx‘𝑡) |
| 8 | | cmvar 35466 |
. . . . . 6
class
mVR |
| 9 | 5, 8 | cfv 6561 |
. . . . 5
class
(mVR‘𝑡) |
| 10 | | cpm 8867 |
. . . . 5
class
↑pm |
| 11 | 7, 9, 10 | co 7431 |
. . . 4
class
((mREx‘𝑡)
↑pm (mVR‘𝑡)) |
| 12 | | ve |
. . . . 5
setvar 𝑒 |
| 13 | | cmcn 35465 |
. . . . . . . . 9
class
mCN |
| 14 | 5, 13 | cfv 6561 |
. . . . . . . 8
class
(mCN‘𝑡) |
| 15 | 14, 9 | cun 3949 |
. . . . . . 7
class
((mCN‘𝑡) ∪
(mVR‘𝑡)) |
| 16 | | cfrmd 18860 |
. . . . . . 7
class
freeMnd |
| 17 | 15, 16 | cfv 6561 |
. . . . . 6
class
(freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) |
| 18 | | vv |
. . . . . . . 8
setvar 𝑣 |
| 19 | 18 | cv 1539 |
. . . . . . . . . 10
class 𝑣 |
| 20 | 4 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 21 | 20 | cdm 5685 |
. . . . . . . . . 10
class dom 𝑓 |
| 22 | 19, 21 | wcel 2108 |
. . . . . . . . 9
wff 𝑣 ∈ dom 𝑓 |
| 23 | 19, 20 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑣) |
| 24 | 19 | cs1 14633 |
. . . . . . . . 9
class
〈“𝑣”〉 |
| 25 | 22, 23, 24 | cif 4525 |
. . . . . . . 8
class if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉) |
| 26 | 18, 15, 25 | cmpt 5225 |
. . . . . . 7
class (𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) |
| 27 | 12 | cv 1539 |
. . . . . . 7
class 𝑒 |
| 28 | 26, 27 | ccom 5689 |
. . . . . 6
class ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) |
| 29 | | cgsu 17485 |
. . . . . 6
class
Σg |
| 30 | 17, 28, 29 | co 7431 |
. . . . 5
class
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) |
| 31 | 12, 7, 30 | cmpt 5225 |
. . . 4
class (𝑒 ∈ (mREx‘𝑡) ↦
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))) |
| 32 | 4, 11, 31 | cmpt 5225 |
. . 3
class (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mREx‘𝑡) ↦
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mREx‘𝑡) ↦
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
| 34 | 1, 33 | wceq 1540 |
1
wff mRSubst =
(𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm
(mVR‘𝑡)) ↦
(𝑒 ∈ (mREx‘𝑡) ↦
((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |