Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubffval Structured version   Visualization version   GIF version

Theorem msubffval 35588
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝑒,𝑉,𝑓
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑊(𝑒,𝑓)

Proof of Theorem msubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝑇𝑊𝑇 ∈ V)
2 msubffval.s . . 3 𝑆 = (mSubst‘𝑇)
3 fveq2 6828 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 msubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2786 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6828 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 msubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2786 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7370 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6828 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
11 msubffval.e . . . . . . 7 𝐸 = (mEx‘𝑇)
1210, 11eqtr4di 2786 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
13 fveq2 6828 . . . . . . . . . 10 (𝑡 = 𝑇 → (mRSubst‘𝑡) = (mRSubst‘𝑇))
14 msubffval.o . . . . . . . . . 10 𝑂 = (mRSubst‘𝑇)
1513, 14eqtr4di 2786 . . . . . . . . 9 (𝑡 = 𝑇 → (mRSubst‘𝑡) = 𝑂)
1615fveq1d 6830 . . . . . . . 8 (𝑡 = 𝑇 → ((mRSubst‘𝑡)‘𝑓) = (𝑂𝑓))
1716fveq1d 6830 . . . . . . 7 (𝑡 = 𝑇 → (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒)) = ((𝑂𝑓)‘(2nd𝑒)))
1817opeq2d 4831 . . . . . 6 (𝑡 = 𝑇 → ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)
1912, 18mpteq12dv 5180 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩))
209, 19mpteq12dv 5180 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
21 df-msub 35556 . . . 4 mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)))
22 ovex 7385 . . . . 5 (𝑅pm 𝑉) ∈ V
2322mptex 7163 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)) ∈ V
2420, 21, 23fvmpt 6935 . . 3 (𝑇 ∈ V → (mSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
252, 24eqtrid 2780 . 2 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
261, 25syl 17 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cmpt 5174  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  pm cpm 8757  mVRcmvar 35526  mRExcmrex 35531  mExcmex 35532  mRSubstcmrsub 35535  mSubstcmsub 35536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-msub 35556
This theorem is referenced by:  msubfval  35589  elmsubrn  35593  msubrn  35594  msubff  35595
  Copyright terms: Public domain W3C validator