Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubffval Structured version   Visualization version   GIF version

Theorem msubffval 35508
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝑒,𝑉,𝑓
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑊(𝑒,𝑓)

Proof of Theorem msubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3499 . 2 (𝑇𝑊𝑇 ∈ V)
2 msubffval.s . . 3 𝑆 = (mSubst‘𝑇)
3 fveq2 6907 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 msubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2793 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6907 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 msubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2793 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7449 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6907 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
11 msubffval.e . . . . . . 7 𝐸 = (mEx‘𝑇)
1210, 11eqtr4di 2793 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
13 fveq2 6907 . . . . . . . . . 10 (𝑡 = 𝑇 → (mRSubst‘𝑡) = (mRSubst‘𝑇))
14 msubffval.o . . . . . . . . . 10 𝑂 = (mRSubst‘𝑇)
1513, 14eqtr4di 2793 . . . . . . . . 9 (𝑡 = 𝑇 → (mRSubst‘𝑡) = 𝑂)
1615fveq1d 6909 . . . . . . . 8 (𝑡 = 𝑇 → ((mRSubst‘𝑡)‘𝑓) = (𝑂𝑓))
1716fveq1d 6909 . . . . . . 7 (𝑡 = 𝑇 → (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒)) = ((𝑂𝑓)‘(2nd𝑒)))
1817opeq2d 4885 . . . . . 6 (𝑡 = 𝑇 → ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)
1912, 18mpteq12dv 5239 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩))
209, 19mpteq12dv 5239 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
21 df-msub 35476 . . . 4 mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)))
22 ovex 7464 . . . . 5 (𝑅pm 𝑉) ∈ V
2322mptex 7243 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)) ∈ V
2420, 21, 23fvmpt 7016 . . 3 (𝑇 ∈ V → (mSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
252, 24eqtrid 2787 . 2 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
261, 25syl 17 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  pm cpm 8866  mVRcmvar 35446  mRExcmrex 35451  mExcmex 35452  mRSubstcmrsub 35455  mSubstcmsub 35456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-msub 35476
This theorem is referenced by:  msubfval  35509  elmsubrn  35513  msubrn  35514  msubff  35515
  Copyright terms: Public domain W3C validator