Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubffval Structured version   Visualization version   GIF version

Theorem msubffval 35495
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubffval (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝑒,𝑉,𝑓
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑊(𝑒,𝑓)

Proof of Theorem msubffval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝑇𝑊𝑇 ∈ V)
2 msubffval.s . . 3 𝑆 = (mSubst‘𝑇)
3 fveq2 6826 . . . . . . 7 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
4 msubffval.r . . . . . . 7 𝑅 = (mREx‘𝑇)
53, 4eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
6 fveq2 6826 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
7 msubffval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
86, 7eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
95, 8oveq12d 7371 . . . . 5 (𝑡 = 𝑇 → ((mREx‘𝑡) ↑pm (mVR‘𝑡)) = (𝑅pm 𝑉))
10 fveq2 6826 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
11 msubffval.e . . . . . . 7 𝐸 = (mEx‘𝑇)
1210, 11eqtr4di 2782 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
13 fveq2 6826 . . . . . . . . . 10 (𝑡 = 𝑇 → (mRSubst‘𝑡) = (mRSubst‘𝑇))
14 msubffval.o . . . . . . . . . 10 𝑂 = (mRSubst‘𝑇)
1513, 14eqtr4di 2782 . . . . . . . . 9 (𝑡 = 𝑇 → (mRSubst‘𝑡) = 𝑂)
1615fveq1d 6828 . . . . . . . 8 (𝑡 = 𝑇 → ((mRSubst‘𝑡)‘𝑓) = (𝑂𝑓))
1716fveq1d 6828 . . . . . . 7 (𝑡 = 𝑇 → (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒)) = ((𝑂𝑓)‘(2nd𝑒)))
1817opeq2d 4834 . . . . . 6 (𝑡 = 𝑇 → ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)
1912, 18mpteq12dv 5182 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩))
209, 19mpteq12dv 5182 . . . 4 (𝑡 = 𝑇 → (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
21 df-msub 35463 . . . 4 mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)))
22 ovex 7386 . . . . 5 (𝑅pm 𝑉) ∈ V
2322mptex 7163 . . . 4 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)) ∈ V
2420, 21, 23fvmpt 6934 . . 3 (𝑇 ∈ V → (mSubst‘𝑇) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
252, 24eqtrid 2776 . 2 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
261, 25syl 17 1 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cmpt 5176  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  pm cpm 8761  mVRcmvar 35433  mRExcmrex 35438  mExcmex 35439  mRSubstcmrsub 35442  mSubstcmsub 35443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-msub 35463
This theorem is referenced by:  msubfval  35496  elmsubrn  35500  msubrn  35501  msubff  35502
  Copyright terms: Public domain W3C validator