Detailed syntax breakdown of Definition df-muls
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmuls 28133 | . 2
class 
·s | 
| 2 |  | vz | . . . 4
setvar 𝑧 | 
| 3 |  | vm | . . . 4
setvar 𝑚 | 
| 4 |  | cvv 3479 | . . . 4
class
V | 
| 5 |  | vx | . . . . 5
setvar 𝑥 | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑧 | 
| 7 |  | c1st 8013 | . . . . . 6
class
1st | 
| 8 | 6, 7 | cfv 6560 | . . . . 5
class
(1st ‘𝑧) | 
| 9 |  | vy | . . . . . 6
setvar 𝑦 | 
| 10 |  | c2nd 8014 | . . . . . . 7
class
2nd | 
| 11 | 6, 10 | cfv 6560 | . . . . . 6
class
(2nd ‘𝑧) | 
| 12 |  | va | . . . . . . . . . . . . 13
setvar 𝑎 | 
| 13 | 12 | cv 1538 | . . . . . . . . . . . 12
class 𝑎 | 
| 14 |  | vp | . . . . . . . . . . . . . . . 16
setvar 𝑝 | 
| 15 | 14 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑝 | 
| 16 | 9 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑦 | 
| 17 | 3 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑚 | 
| 18 | 15, 16, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑝𝑚𝑦) | 
| 19 | 5 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑥 | 
| 20 |  | vq | . . . . . . . . . . . . . . . 16
setvar 𝑞 | 
| 21 | 20 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑞 | 
| 22 | 19, 21, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑥𝑚𝑞) | 
| 23 |  | cadds 27993 | . . . . . . . . . . . . . 14
class 
+s | 
| 24 | 18, 22, 23 | co 7432 | . . . . . . . . . . . . 13
class ((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) | 
| 25 | 15, 21, 17 | co 7432 | . . . . . . . . . . . . 13
class (𝑝𝑚𝑞) | 
| 26 |  | csubs 28053 | . . . . . . . . . . . . 13
class 
-s | 
| 27 | 24, 25, 26 | co 7432 | . . . . . . . . . . . 12
class (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) | 
| 28 | 13, 27 | wceq 1539 | . . . . . . . . . . 11
wff 𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) | 
| 29 |  | cleft 27885 | . . . . . . . . . . . 12
class 
L | 
| 30 | 16, 29 | cfv 6560 | . . . . . . . . . . 11
class ( L
‘𝑦) | 
| 31 | 28, 20, 30 | wrex 3069 | . . . . . . . . . 10
wff
∃𝑞 ∈ ( L
‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) | 
| 32 | 19, 29 | cfv 6560 | . . . . . . . . . 10
class ( L
‘𝑥) | 
| 33 | 31, 14, 32 | wrex 3069 | . . . . . . . . 9
wff
∃𝑝 ∈ ( L
‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) | 
| 34 | 33, 12 | cab 2713 | . . . . . . . 8
class {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} | 
| 35 |  | vb | . . . . . . . . . . . . 13
setvar 𝑏 | 
| 36 | 35 | cv 1538 | . . . . . . . . . . . 12
class 𝑏 | 
| 37 |  | vr | . . . . . . . . . . . . . . . 16
setvar 𝑟 | 
| 38 | 37 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑟 | 
| 39 | 38, 16, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑟𝑚𝑦) | 
| 40 |  | vs | . . . . . . . . . . . . . . . 16
setvar 𝑠 | 
| 41 | 40 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑠 | 
| 42 | 19, 41, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑥𝑚𝑠) | 
| 43 | 39, 42, 23 | co 7432 | . . . . . . . . . . . . 13
class ((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) | 
| 44 | 38, 41, 17 | co 7432 | . . . . . . . . . . . . 13
class (𝑟𝑚𝑠) | 
| 45 | 43, 44, 26 | co 7432 | . . . . . . . . . . . 12
class (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) | 
| 46 | 36, 45 | wceq 1539 | . . . . . . . . . . 11
wff 𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) | 
| 47 |  | cright 27886 | . . . . . . . . . . . 12
class 
R | 
| 48 | 16, 47 | cfv 6560 | . . . . . . . . . . 11
class ( R
‘𝑦) | 
| 49 | 46, 40, 48 | wrex 3069 | . . . . . . . . . 10
wff
∃𝑠 ∈ ( R
‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) | 
| 50 | 19, 47 | cfv 6560 | . . . . . . . . . 10
class ( R
‘𝑥) | 
| 51 | 49, 37, 50 | wrex 3069 | . . . . . . . . 9
wff
∃𝑟 ∈ ( R
‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) | 
| 52 | 51, 35 | cab 2713 | . . . . . . . 8
class {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))} | 
| 53 | 34, 52 | cun 3948 | . . . . . . 7
class ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) | 
| 54 |  | vc | . . . . . . . . . . . . 13
setvar 𝑐 | 
| 55 | 54 | cv 1538 | . . . . . . . . . . . 12
class 𝑐 | 
| 56 |  | vt | . . . . . . . . . . . . . . . 16
setvar 𝑡 | 
| 57 | 56 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑡 | 
| 58 | 57, 16, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑡𝑚𝑦) | 
| 59 |  | vu | . . . . . . . . . . . . . . . 16
setvar 𝑢 | 
| 60 | 59 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑢 | 
| 61 | 19, 60, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑥𝑚𝑢) | 
| 62 | 58, 61, 23 | co 7432 | . . . . . . . . . . . . 13
class ((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) | 
| 63 | 57, 60, 17 | co 7432 | . . . . . . . . . . . . 13
class (𝑡𝑚𝑢) | 
| 64 | 62, 63, 26 | co 7432 | . . . . . . . . . . . 12
class (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) | 
| 65 | 55, 64 | wceq 1539 | . . . . . . . . . . 11
wff 𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) | 
| 66 | 65, 59, 48 | wrex 3069 | . . . . . . . . . 10
wff
∃𝑢 ∈ ( R
‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) | 
| 67 | 66, 56, 32 | wrex 3069 | . . . . . . . . 9
wff
∃𝑡 ∈ ( L
‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) | 
| 68 | 67, 54 | cab 2713 | . . . . . . . 8
class {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} | 
| 69 |  | vd | . . . . . . . . . . . . 13
setvar 𝑑 | 
| 70 | 69 | cv 1538 | . . . . . . . . . . . 12
class 𝑑 | 
| 71 |  | vv | . . . . . . . . . . . . . . . 16
setvar 𝑣 | 
| 72 | 71 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑣 | 
| 73 | 72, 16, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑣𝑚𝑦) | 
| 74 |  | vw | . . . . . . . . . . . . . . . 16
setvar 𝑤 | 
| 75 | 74 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑤 | 
| 76 | 19, 75, 17 | co 7432 | . . . . . . . . . . . . . 14
class (𝑥𝑚𝑤) | 
| 77 | 73, 76, 23 | co 7432 | . . . . . . . . . . . . 13
class ((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) | 
| 78 | 72, 75, 17 | co 7432 | . . . . . . . . . . . . 13
class (𝑣𝑚𝑤) | 
| 79 | 77, 78, 26 | co 7432 | . . . . . . . . . . . 12
class (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) | 
| 80 | 70, 79 | wceq 1539 | . . . . . . . . . . 11
wff 𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) | 
| 81 | 80, 74, 30 | wrex 3069 | . . . . . . . . . 10
wff
∃𝑤 ∈ ( L
‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) | 
| 82 | 81, 71, 50 | wrex 3069 | . . . . . . . . 9
wff
∃𝑣 ∈ ( R
‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) | 
| 83 | 82, 69 | cab 2713 | . . . . . . . 8
class {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))} | 
| 84 | 68, 83 | cun 3948 | . . . . . . 7
class ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}) | 
| 85 |  | cscut 27828 | . . . . . . 7
class 
|s | 
| 86 | 53, 84, 85 | co 7432 | . . . . . 6
class (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) | 
| 87 | 9, 11, 86 | csb 3898 | . . . . 5
class
⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) | 
| 88 | 5, 8, 87 | csb 3898 | . . . 4
class
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) | 
| 89 | 2, 3, 4, 4, 88 | cmpo 7434 | . . 3
class (𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))) | 
| 90 | 89 | cnorec2 27982 | . 2
class  norec2
((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) | 
| 91 | 1, 90 | wceq 1539 | 1
wff 
·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |