MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-muls Structured version   Visualization version   GIF version

Definition df-muls 27923
Description: Define surreal multiplication. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
df-muls ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
Distinct variable group:   𝑧,𝑚,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-muls
StepHypRef Expression
1 cmuls 27922 . 2 class ·s
2 vz . . . 4 setvar 𝑧
3 vm . . . 4 setvar 𝑚
4 cvv 3466 . . . 4 class V
5 vx . . . . 5 setvar 𝑥
62cv 1532 . . . . . 6 class 𝑧
7 c1st 7966 . . . . . 6 class 1st
86, 7cfv 6533 . . . . 5 class (1st𝑧)
9 vy . . . . . 6 setvar 𝑦
10 c2nd 7967 . . . . . . 7 class 2nd
116, 10cfv 6533 . . . . . 6 class (2nd𝑧)
12 va . . . . . . . . . . . . 13 setvar 𝑎
1312cv 1532 . . . . . . . . . . . 12 class 𝑎
14 vp . . . . . . . . . . . . . . . 16 setvar 𝑝
1514cv 1532 . . . . . . . . . . . . . . 15 class 𝑝
169cv 1532 . . . . . . . . . . . . . . 15 class 𝑦
173cv 1532 . . . . . . . . . . . . . . 15 class 𝑚
1815, 16, 17co 7401 . . . . . . . . . . . . . 14 class (𝑝𝑚𝑦)
195cv 1532 . . . . . . . . . . . . . . 15 class 𝑥
20 vq . . . . . . . . . . . . . . . 16 setvar 𝑞
2120cv 1532 . . . . . . . . . . . . . . 15 class 𝑞
2219, 21, 17co 7401 . . . . . . . . . . . . . 14 class (𝑥𝑚𝑞)
23 cadds 27792 . . . . . . . . . . . . . 14 class +s
2418, 22, 23co 7401 . . . . . . . . . . . . 13 class ((𝑝𝑚𝑦) +s (𝑥𝑚𝑞))
2515, 21, 17co 7401 . . . . . . . . . . . . 13 class (𝑝𝑚𝑞)
26 csubs 27849 . . . . . . . . . . . . 13 class -s
2724, 25, 26co 7401 . . . . . . . . . . . 12 class (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))
2813, 27wceq 1533 . . . . . . . . . . 11 wff 𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))
29 cleft 27688 . . . . . . . . . . . 12 class L
3016, 29cfv 6533 . . . . . . . . . . 11 class ( L ‘𝑦)
3128, 20, 30wrex 3062 . . . . . . . . . 10 wff 𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))
3219, 29cfv 6533 . . . . . . . . . 10 class ( L ‘𝑥)
3331, 14, 32wrex 3062 . . . . . . . . 9 wff 𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))
3433, 12cab 2701 . . . . . . . 8 class {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))}
35 vb . . . . . . . . . . . . 13 setvar 𝑏
3635cv 1532 . . . . . . . . . . . 12 class 𝑏
37 vr . . . . . . . . . . . . . . . 16 setvar 𝑟
3837cv 1532 . . . . . . . . . . . . . . 15 class 𝑟
3938, 16, 17co 7401 . . . . . . . . . . . . . 14 class (𝑟𝑚𝑦)
40 vs . . . . . . . . . . . . . . . 16 setvar 𝑠
4140cv 1532 . . . . . . . . . . . . . . 15 class 𝑠
4219, 41, 17co 7401 . . . . . . . . . . . . . 14 class (𝑥𝑚𝑠)
4339, 42, 23co 7401 . . . . . . . . . . . . 13 class ((𝑟𝑚𝑦) +s (𝑥𝑚𝑠))
4438, 41, 17co 7401 . . . . . . . . . . . . 13 class (𝑟𝑚𝑠)
4543, 44, 26co 7401 . . . . . . . . . . . 12 class (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))
4636, 45wceq 1533 . . . . . . . . . . 11 wff 𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))
47 cright 27689 . . . . . . . . . . . 12 class R
4816, 47cfv 6533 . . . . . . . . . . 11 class ( R ‘𝑦)
4946, 40, 48wrex 3062 . . . . . . . . . 10 wff 𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))
5019, 47cfv 6533 . . . . . . . . . 10 class ( R ‘𝑥)
5149, 37, 50wrex 3062 . . . . . . . . 9 wff 𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))
5251, 35cab 2701 . . . . . . . 8 class {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}
5334, 52cun 3938 . . . . . . 7 class ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))})
54 vc . . . . . . . . . . . . 13 setvar 𝑐
5554cv 1532 . . . . . . . . . . . 12 class 𝑐
56 vt . . . . . . . . . . . . . . . 16 setvar 𝑡
5756cv 1532 . . . . . . . . . . . . . . 15 class 𝑡
5857, 16, 17co 7401 . . . . . . . . . . . . . 14 class (𝑡𝑚𝑦)
59 vu . . . . . . . . . . . . . . . 16 setvar 𝑢
6059cv 1532 . . . . . . . . . . . . . . 15 class 𝑢
6119, 60, 17co 7401 . . . . . . . . . . . . . 14 class (𝑥𝑚𝑢)
6258, 61, 23co 7401 . . . . . . . . . . . . 13 class ((𝑡𝑚𝑦) +s (𝑥𝑚𝑢))
6357, 60, 17co 7401 . . . . . . . . . . . . 13 class (𝑡𝑚𝑢)
6462, 63, 26co 7401 . . . . . . . . . . . 12 class (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))
6555, 64wceq 1533 . . . . . . . . . . 11 wff 𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))
6665, 59, 48wrex 3062 . . . . . . . . . 10 wff 𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))
6766, 56, 32wrex 3062 . . . . . . . . 9 wff 𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))
6867, 54cab 2701 . . . . . . . 8 class {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))}
69 vd . . . . . . . . . . . . 13 setvar 𝑑
7069cv 1532 . . . . . . . . . . . 12 class 𝑑
71 vv . . . . . . . . . . . . . . . 16 setvar 𝑣
7271cv 1532 . . . . . . . . . . . . . . 15 class 𝑣
7372, 16, 17co 7401 . . . . . . . . . . . . . 14 class (𝑣𝑚𝑦)
74 vw . . . . . . . . . . . . . . . 16 setvar 𝑤
7574cv 1532 . . . . . . . . . . . . . . 15 class 𝑤
7619, 75, 17co 7401 . . . . . . . . . . . . . 14 class (𝑥𝑚𝑤)
7773, 76, 23co 7401 . . . . . . . . . . . . 13 class ((𝑣𝑚𝑦) +s (𝑥𝑚𝑤))
7872, 75, 17co 7401 . . . . . . . . . . . . 13 class (𝑣𝑚𝑤)
7977, 78, 26co 7401 . . . . . . . . . . . 12 class (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))
8070, 79wceq 1533 . . . . . . . . . . 11 wff 𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))
8180, 74, 30wrex 3062 . . . . . . . . . 10 wff 𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))
8281, 71, 50wrex 3062 . . . . . . . . 9 wff 𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))
8382, 69cab 2701 . . . . . . . 8 class {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}
8468, 83cun 3938 . . . . . . 7 class ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})
85 cscut 27631 . . . . . . 7 class |s
8653, 84, 85co 7401 . . . . . 6 class (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))
879, 11, 86csb 3885 . . . . 5 class (2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))
885, 8, 87csb 3885 . . . 4 class (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))
892, 3, 4, 4, 88cmpo 7403 . . 3 class (𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))
9089cnorec2 27781 . 2 class norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
911, 90wceq 1533 1 wff ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
Colors of variables: wff setvar class
This definition is referenced by:  mulsfn  27924  mulsval  27925
  Copyright terms: Public domain W3C validator