Detailed syntax breakdown of Definition df-muls
| Step | Hyp | Ref
| Expression |
| 1 | | cmuls 28066 |
. 2
class
·s |
| 2 | | vz |
. . . 4
setvar 𝑧 |
| 3 | | vm |
. . . 4
setvar 𝑚 |
| 4 | | cvv 3464 |
. . . 4
class
V |
| 5 | | vx |
. . . . 5
setvar 𝑥 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑧 |
| 7 | | c1st 7991 |
. . . . . 6
class
1st |
| 8 | 6, 7 | cfv 6536 |
. . . . 5
class
(1st ‘𝑧) |
| 9 | | vy |
. . . . . 6
setvar 𝑦 |
| 10 | | c2nd 7992 |
. . . . . . 7
class
2nd |
| 11 | 6, 10 | cfv 6536 |
. . . . . 6
class
(2nd ‘𝑧) |
| 12 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
| 13 | 12 | cv 1539 |
. . . . . . . . . . . 12
class 𝑎 |
| 14 | | vp |
. . . . . . . . . . . . . . . 16
setvar 𝑝 |
| 15 | 14 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑝 |
| 16 | 9 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑦 |
| 17 | 3 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑚 |
| 18 | 15, 16, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑝𝑚𝑦) |
| 19 | 5 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑥 |
| 20 | | vq |
. . . . . . . . . . . . . . . 16
setvar 𝑞 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑞 |
| 22 | 19, 21, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑞) |
| 23 | | cadds 27923 |
. . . . . . . . . . . . . 14
class
+s |
| 24 | 18, 22, 23 | co 7410 |
. . . . . . . . . . . . 13
class ((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) |
| 25 | 15, 21, 17 | co 7410 |
. . . . . . . . . . . . 13
class (𝑝𝑚𝑞) |
| 26 | | csubs 27983 |
. . . . . . . . . . . . 13
class
-s |
| 27 | 24, 25, 26 | co 7410 |
. . . . . . . . . . . 12
class (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
| 28 | 13, 27 | wceq 1540 |
. . . . . . . . . . 11
wff 𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
| 29 | | cleft 27810 |
. . . . . . . . . . . 12
class
L |
| 30 | 16, 29 | cfv 6536 |
. . . . . . . . . . 11
class ( L
‘𝑦) |
| 31 | 28, 20, 30 | wrex 3061 |
. . . . . . . . . 10
wff
∃𝑞 ∈ ( L
‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
| 32 | 19, 29 | cfv 6536 |
. . . . . . . . . 10
class ( L
‘𝑥) |
| 33 | 31, 14, 32 | wrex 3061 |
. . . . . . . . 9
wff
∃𝑝 ∈ ( L
‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
| 34 | 33, 12 | cab 2714 |
. . . . . . . 8
class {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} |
| 35 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
| 36 | 35 | cv 1539 |
. . . . . . . . . . . 12
class 𝑏 |
| 37 | | vr |
. . . . . . . . . . . . . . . 16
setvar 𝑟 |
| 38 | 37 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑟 |
| 39 | 38, 16, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑟𝑚𝑦) |
| 40 | | vs |
. . . . . . . . . . . . . . . 16
setvar 𝑠 |
| 41 | 40 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑠 |
| 42 | 19, 41, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑠) |
| 43 | 39, 42, 23 | co 7410 |
. . . . . . . . . . . . 13
class ((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) |
| 44 | 38, 41, 17 | co 7410 |
. . . . . . . . . . . . 13
class (𝑟𝑚𝑠) |
| 45 | 43, 44, 26 | co 7410 |
. . . . . . . . . . . 12
class (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
| 46 | 36, 45 | wceq 1540 |
. . . . . . . . . . 11
wff 𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
| 47 | | cright 27811 |
. . . . . . . . . . . 12
class
R |
| 48 | 16, 47 | cfv 6536 |
. . . . . . . . . . 11
class ( R
‘𝑦) |
| 49 | 46, 40, 48 | wrex 3061 |
. . . . . . . . . 10
wff
∃𝑠 ∈ ( R
‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
| 50 | 19, 47 | cfv 6536 |
. . . . . . . . . 10
class ( R
‘𝑥) |
| 51 | 49, 37, 50 | wrex 3061 |
. . . . . . . . 9
wff
∃𝑟 ∈ ( R
‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
| 52 | 51, 35 | cab 2714 |
. . . . . . . 8
class {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))} |
| 53 | 34, 52 | cun 3929 |
. . . . . . 7
class ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |
| 54 | | vc |
. . . . . . . . . . . . 13
setvar 𝑐 |
| 55 | 54 | cv 1539 |
. . . . . . . . . . . 12
class 𝑐 |
| 56 | | vt |
. . . . . . . . . . . . . . . 16
setvar 𝑡 |
| 57 | 56 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑡 |
| 58 | 57, 16, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑡𝑚𝑦) |
| 59 | | vu |
. . . . . . . . . . . . . . . 16
setvar 𝑢 |
| 60 | 59 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑢 |
| 61 | 19, 60, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑢) |
| 62 | 58, 61, 23 | co 7410 |
. . . . . . . . . . . . 13
class ((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) |
| 63 | 57, 60, 17 | co 7410 |
. . . . . . . . . . . . 13
class (𝑡𝑚𝑢) |
| 64 | 62, 63, 26 | co 7410 |
. . . . . . . . . . . 12
class (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
| 65 | 55, 64 | wceq 1540 |
. . . . . . . . . . 11
wff 𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
| 66 | 65, 59, 48 | wrex 3061 |
. . . . . . . . . 10
wff
∃𝑢 ∈ ( R
‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
| 67 | 66, 56, 32 | wrex 3061 |
. . . . . . . . 9
wff
∃𝑡 ∈ ( L
‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
| 68 | 67, 54 | cab 2714 |
. . . . . . . 8
class {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} |
| 69 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
| 70 | 69 | cv 1539 |
. . . . . . . . . . . 12
class 𝑑 |
| 71 | | vv |
. . . . . . . . . . . . . . . 16
setvar 𝑣 |
| 72 | 71 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑣 |
| 73 | 72, 16, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑣𝑚𝑦) |
| 74 | | vw |
. . . . . . . . . . . . . . . 16
setvar 𝑤 |
| 75 | 74 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑤 |
| 76 | 19, 75, 17 | co 7410 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑤) |
| 77 | 73, 76, 23 | co 7410 |
. . . . . . . . . . . . 13
class ((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) |
| 78 | 72, 75, 17 | co 7410 |
. . . . . . . . . . . . 13
class (𝑣𝑚𝑤) |
| 79 | 77, 78, 26 | co 7410 |
. . . . . . . . . . . 12
class (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
| 80 | 70, 79 | wceq 1540 |
. . . . . . . . . . 11
wff 𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
| 81 | 80, 74, 30 | wrex 3061 |
. . . . . . . . . 10
wff
∃𝑤 ∈ ( L
‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
| 82 | 81, 71, 50 | wrex 3061 |
. . . . . . . . 9
wff
∃𝑣 ∈ ( R
‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
| 83 | 82, 69 | cab 2714 |
. . . . . . . 8
class {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))} |
| 84 | 68, 83 | cun 3929 |
. . . . . . 7
class ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}) |
| 85 | | cscut 27751 |
. . . . . . 7
class
|s |
| 86 | 53, 84, 85 | co 7410 |
. . . . . 6
class (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
| 87 | 9, 11, 86 | csb 3879 |
. . . . 5
class
⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
| 88 | 5, 8, 87 | csb 3879 |
. . . 4
class
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
| 89 | 2, 3, 4, 4, 88 | cmpo 7412 |
. . 3
class (𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))) |
| 90 | 89 | cnorec2 27912 |
. 2
class norec2
((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |
| 91 | 1, 90 | wceq 1540 |
1
wff
·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |