Detailed syntax breakdown of Definition df-muls
Step | Hyp | Ref
| Expression |
1 | | cmuls 27922 |
. 2
class
·s |
2 | | vz |
. . . 4
setvar 𝑧 |
3 | | vm |
. . . 4
setvar 𝑚 |
4 | | cvv 3466 |
. . . 4
class
V |
5 | | vx |
. . . . 5
setvar 𝑥 |
6 | 2 | cv 1532 |
. . . . . 6
class 𝑧 |
7 | | c1st 7966 |
. . . . . 6
class
1st |
8 | 6, 7 | cfv 6533 |
. . . . 5
class
(1st ‘𝑧) |
9 | | vy |
. . . . . 6
setvar 𝑦 |
10 | | c2nd 7967 |
. . . . . . 7
class
2nd |
11 | 6, 10 | cfv 6533 |
. . . . . 6
class
(2nd ‘𝑧) |
12 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
13 | 12 | cv 1532 |
. . . . . . . . . . . 12
class 𝑎 |
14 | | vp |
. . . . . . . . . . . . . . . 16
setvar 𝑝 |
15 | 14 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑝 |
16 | 9 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑦 |
17 | 3 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑚 |
18 | 15, 16, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑝𝑚𝑦) |
19 | 5 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑥 |
20 | | vq |
. . . . . . . . . . . . . . . 16
setvar 𝑞 |
21 | 20 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑞 |
22 | 19, 21, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑞) |
23 | | cadds 27792 |
. . . . . . . . . . . . . 14
class
+s |
24 | 18, 22, 23 | co 7401 |
. . . . . . . . . . . . 13
class ((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) |
25 | 15, 21, 17 | co 7401 |
. . . . . . . . . . . . 13
class (𝑝𝑚𝑞) |
26 | | csubs 27849 |
. . . . . . . . . . . . 13
class
-s |
27 | 24, 25, 26 | co 7401 |
. . . . . . . . . . . 12
class (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
28 | 13, 27 | wceq 1533 |
. . . . . . . . . . 11
wff 𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
29 | | cleft 27688 |
. . . . . . . . . . . 12
class
L |
30 | 16, 29 | cfv 6533 |
. . . . . . . . . . 11
class ( L
‘𝑦) |
31 | 28, 20, 30 | wrex 3062 |
. . . . . . . . . 10
wff
∃𝑞 ∈ ( L
‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
32 | 19, 29 | cfv 6533 |
. . . . . . . . . 10
class ( L
‘𝑥) |
33 | 31, 14, 32 | wrex 3062 |
. . . . . . . . 9
wff
∃𝑝 ∈ ( L
‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) |
34 | 33, 12 | cab 2701 |
. . . . . . . 8
class {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} |
35 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
36 | 35 | cv 1532 |
. . . . . . . . . . . 12
class 𝑏 |
37 | | vr |
. . . . . . . . . . . . . . . 16
setvar 𝑟 |
38 | 37 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑟 |
39 | 38, 16, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑟𝑚𝑦) |
40 | | vs |
. . . . . . . . . . . . . . . 16
setvar 𝑠 |
41 | 40 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑠 |
42 | 19, 41, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑠) |
43 | 39, 42, 23 | co 7401 |
. . . . . . . . . . . . 13
class ((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) |
44 | 38, 41, 17 | co 7401 |
. . . . . . . . . . . . 13
class (𝑟𝑚𝑠) |
45 | 43, 44, 26 | co 7401 |
. . . . . . . . . . . 12
class (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
46 | 36, 45 | wceq 1533 |
. . . . . . . . . . 11
wff 𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
47 | | cright 27689 |
. . . . . . . . . . . 12
class
R |
48 | 16, 47 | cfv 6533 |
. . . . . . . . . . 11
class ( R
‘𝑦) |
49 | 46, 40, 48 | wrex 3062 |
. . . . . . . . . 10
wff
∃𝑠 ∈ ( R
‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
50 | 19, 47 | cfv 6533 |
. . . . . . . . . 10
class ( R
‘𝑥) |
51 | 49, 37, 50 | wrex 3062 |
. . . . . . . . 9
wff
∃𝑟 ∈ ( R
‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) |
52 | 51, 35 | cab 2701 |
. . . . . . . 8
class {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))} |
53 | 34, 52 | cun 3938 |
. . . . . . 7
class ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |
54 | | vc |
. . . . . . . . . . . . 13
setvar 𝑐 |
55 | 54 | cv 1532 |
. . . . . . . . . . . 12
class 𝑐 |
56 | | vt |
. . . . . . . . . . . . . . . 16
setvar 𝑡 |
57 | 56 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑡 |
58 | 57, 16, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑡𝑚𝑦) |
59 | | vu |
. . . . . . . . . . . . . . . 16
setvar 𝑢 |
60 | 59 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑢 |
61 | 19, 60, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑢) |
62 | 58, 61, 23 | co 7401 |
. . . . . . . . . . . . 13
class ((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) |
63 | 57, 60, 17 | co 7401 |
. . . . . . . . . . . . 13
class (𝑡𝑚𝑢) |
64 | 62, 63, 26 | co 7401 |
. . . . . . . . . . . 12
class (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
65 | 55, 64 | wceq 1533 |
. . . . . . . . . . 11
wff 𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
66 | 65, 59, 48 | wrex 3062 |
. . . . . . . . . 10
wff
∃𝑢 ∈ ( R
‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
67 | 66, 56, 32 | wrex 3062 |
. . . . . . . . 9
wff
∃𝑡 ∈ ( L
‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) |
68 | 67, 54 | cab 2701 |
. . . . . . . 8
class {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} |
69 | | vd |
. . . . . . . . . . . . 13
setvar 𝑑 |
70 | 69 | cv 1532 |
. . . . . . . . . . . 12
class 𝑑 |
71 | | vv |
. . . . . . . . . . . . . . . 16
setvar 𝑣 |
72 | 71 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑣 |
73 | 72, 16, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑣𝑚𝑦) |
74 | | vw |
. . . . . . . . . . . . . . . 16
setvar 𝑤 |
75 | 74 | cv 1532 |
. . . . . . . . . . . . . . 15
class 𝑤 |
76 | 19, 75, 17 | co 7401 |
. . . . . . . . . . . . . 14
class (𝑥𝑚𝑤) |
77 | 73, 76, 23 | co 7401 |
. . . . . . . . . . . . 13
class ((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) |
78 | 72, 75, 17 | co 7401 |
. . . . . . . . . . . . 13
class (𝑣𝑚𝑤) |
79 | 77, 78, 26 | co 7401 |
. . . . . . . . . . . 12
class (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
80 | 70, 79 | wceq 1533 |
. . . . . . . . . . 11
wff 𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
81 | 80, 74, 30 | wrex 3062 |
. . . . . . . . . 10
wff
∃𝑤 ∈ ( L
‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
82 | 81, 71, 50 | wrex 3062 |
. . . . . . . . 9
wff
∃𝑣 ∈ ( R
‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) |
83 | 82, 69 | cab 2701 |
. . . . . . . 8
class {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))} |
84 | 68, 83 | cun 3938 |
. . . . . . 7
class ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}) |
85 | | cscut 27631 |
. . . . . . 7
class
|s |
86 | 53, 84, 85 | co 7401 |
. . . . . 6
class (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
87 | 9, 11, 86 | csb 3885 |
. . . . 5
class
⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
88 | 5, 8, 87 | csb 3885 |
. . . 4
class
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) |
89 | 2, 3, 4, 4, 88 | cmpo 7403 |
. . 3
class (𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))) |
90 | 89 | cnorec2 27781 |
. 2
class norec2
((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |
91 | 1, 90 | wceq 1533 |
1
wff
·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |