MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsval Structured version   Visualization version   GIF version

Theorem mulsval 27922
Description: The value of surreal multiplication. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
mulsval ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤   𝐵,𝑎,𝑏,𝑐,𝑑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤

Proof of Theorem mulsval
Dummy variables 𝑧 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-muls 27920 . . 3 ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
21norec2ov 27787 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (⟨𝐴, 𝐵⟩(𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))))
3 opex 5464 . . . 4 𝐴, 𝐵⟩ ∈ V
4 mulsfn 27921 . . . . . 6 ·s Fn ( No × No )
5 fnfun 6649 . . . . . 6 ( ·s Fn ( No × No ) → Fun ·s )
64, 5ax-mp 5 . . . . 5 Fun ·s
7 fvex 6904 . . . . . . . . 9 ( L ‘𝐴) ∈ V
8 fvex 6904 . . . . . . . . 9 ( R ‘𝐴) ∈ V
97, 8unex 7737 . . . . . . . 8 (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V
10 snex 5431 . . . . . . . 8 {𝐴} ∈ V
119, 10unex 7737 . . . . . . 7 ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) ∈ V
12 fvex 6904 . . . . . . . . 9 ( L ‘𝐵) ∈ V
13 fvex 6904 . . . . . . . . 9 ( R ‘𝐵) ∈ V
1412, 13unex 7737 . . . . . . . 8 (( L ‘𝐵) ∪ ( R ‘𝐵)) ∈ V
15 snex 5431 . . . . . . . 8 {𝐵} ∈ V
1614, 15unex 7737 . . . . . . 7 ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}) ∈ V
1711, 16xpex 7744 . . . . . 6 (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∈ V
1817difexi 5328 . . . . 5 ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ∈ V
19 resfunexg 7219 . . . . 5 ((Fun ·s ∧ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) ∈ V) → ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V)
206, 18, 19mp2an 689 . . . 4 ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V
21 fveq2 6891 . . . . . 6 (𝑧 = ⟨𝐴, 𝐵⟩ → (1st𝑧) = (1st ‘⟨𝐴, 𝐵⟩))
22 fveq2 6891 . . . . . . 7 (𝑧 = ⟨𝐴, 𝐵⟩ → (2nd𝑧) = (2nd ‘⟨𝐴, 𝐵⟩))
2322csbeq1d 3897 . . . . . 6 (𝑧 = ⟨𝐴, 𝐵⟩ → (2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) = (2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))
2421, 23csbeq12dv 3902 . . . . 5 (𝑧 = ⟨𝐴, 𝐵⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) = (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))
25 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑝𝑚𝑦) = (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦))
26 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑥𝑚𝑞) = (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))
2725, 26oveq12d 7430 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) = ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
28 oveq 7418 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑝𝑚𝑞) = (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))
2927, 28oveq12d 7430 . . . . . . . . . . . 12 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
3029eqeq2d 2742 . . . . . . . . . . 11 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) ↔ 𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
31302rexbidv 3218 . . . . . . . . . 10 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
3231abbidv 2800 . . . . . . . . 9 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} = {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))})
33 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑟𝑚𝑦) = (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦))
34 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑥𝑚𝑠) = (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))
3533, 34oveq12d 7430 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) = ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
36 oveq 7418 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑟𝑚𝑠) = (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))
3735, 36oveq12d 7430 . . . . . . . . . . . 12 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
3837eqeq2d 2742 . . . . . . . . . . 11 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) ↔ 𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
39382rexbidv 3218 . . . . . . . . . 10 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
4039abbidv 2800 . . . . . . . . 9 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))} = {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))})
4132, 40uneq12d 4164 . . . . . . . 8 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) = ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}))
42 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑡𝑚𝑦) = (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦))
43 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑥𝑚𝑢) = (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))
4442, 43oveq12d 7430 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) = ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
45 oveq 7418 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑡𝑚𝑢) = (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))
4644, 45oveq12d 7430 . . . . . . . . . . . 12 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
4746eqeq2d 2742 . . . . . . . . . . 11 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) ↔ 𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
48472rexbidv 3218 . . . . . . . . . 10 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
4948abbidv 2800 . . . . . . . . 9 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} = {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))})
50 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑣𝑚𝑦) = (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦))
51 oveq 7418 . . . . . . . . . . . . . 14 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑥𝑚𝑤) = (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))
5250, 51oveq12d 7430 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) = ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
53 oveq 7418 . . . . . . . . . . . . 13 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑣𝑚𝑤) = (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))
5452, 53oveq12d 7430 . . . . . . . . . . . 12 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
5554eqeq2d 2742 . . . . . . . . . . 11 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) ↔ 𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
56552rexbidv 3218 . . . . . . . . . 10 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
5756abbidv 2800 . . . . . . . . 9 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))} = {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})
5849, 57uneq12d 4164 . . . . . . . 8 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}) = ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}))
5941, 58oveq12d 7430 . . . . . . 7 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
6059csbeq2dv 3900 . . . . . 6 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) = (2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
6160csbeq2dv 3900 . . . . 5 (𝑚 = ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) → (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})) = (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
62 eqid 2731 . . . . 5 (𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))) = (𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))
63 ovex 7445 . . . . . . 7 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) ∈ V
6463csbex 5311 . . . . . 6 (2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) ∈ V
6564csbex 5311 . . . . 5 (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) ∈ V
6624, 61, 62, 65ovmpo 7571 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) ∈ V) → (⟨𝐴, 𝐵⟩(𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
673, 20, 66mp2an 689 . . 3 (⟨𝐴, 𝐵⟩(𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}))
68 op1stg 7991 . . . . 5 ((𝐴 No 𝐵 No ) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
6968csbeq1d 3897 . . . 4 ((𝐴 No 𝐵 No ) → (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐴 / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
70 op2ndg 7992 . . . . . 6 ((𝐴 No 𝐵 No ) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
7170csbeq1d 3897 . . . . 5 ((𝐴 No 𝐵 No ) → (2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
7271csbeq2dv 3900 . . . 4 ((𝐴 No 𝐵 No ) → 𝐴 / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐴 / 𝑥𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
73 simpl 482 . . . . . 6 ((𝐴 No 𝐵 No ) → 𝐴 No )
74 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ( L ‘𝑥) = ( L ‘𝐴))
75 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞) = (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))
7675oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
7776oveq1d 7427 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
7877eqeq2d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ 𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
7978rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ ∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
8074, 79rexeqbidv 3342 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
8180abbidv 2800 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} = {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))})
82 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
83 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠) = (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))
8483oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
8584oveq1d 7427 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
8685eqeq2d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ 𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
8786rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ ∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
8882, 87rexeqbidv 3342 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
8988abbidv 2800 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))} = {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))})
9081, 89uneq12d 4164 . . . . . . . . 9 (𝑥 = 𝐴 → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) = ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}))
91 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢) = (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))
9291oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
9392oveq1d 7427 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
9493eqeq2d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ 𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
9594rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ ∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
9674, 95rexeqbidv 3342 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
9796abbidv 2800 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} = {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))})
98 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤) = (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))
9998oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
10099oveq1d 7427 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
101100eqeq2d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ 𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
102101rexbidv 3177 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ ∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
10382, 102rexeqbidv 3342 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
104103abbidv 2800 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))} = {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})
10597, 104uneq12d 4164 . . . . . . . . 9 (𝑥 = 𝐴 → ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}) = ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}))
10690, 105oveq12d 7430 . . . . . . . 8 (𝑥 = 𝐴 → (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
107106csbeq2dv 3900 . . . . . . 7 (𝑥 = 𝐴𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
108107adantl 481 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
10973, 108csbied 3931 . . . . 5 ((𝐴 No 𝐵 No ) → 𝐴 / 𝑥𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
110 simpr 484 . . . . . 6 ((𝐴 No 𝐵 No ) → 𝐵 No )
111 fveq2 6891 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ( L ‘𝑦) = ( L ‘𝐵))
112 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) = (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
113112oveq1d 7427 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
114113oveq1d 7427 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)))
115114eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ 𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
116111, 115rexeqbidv 3342 . . . . . . . . . . 11 (𝑦 = 𝐵 → (∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ ∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
117116rexbidv 3177 . . . . . . . . . 10 (𝑦 = 𝐵 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))))
118117abbidv 2800 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} = {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))})
119 fveq2 6891 . . . . . . . . . . . 12 (𝑦 = 𝐵 → ( R ‘𝑦) = ( R ‘𝐵))
120 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) = (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
121120oveq1d 7427 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
122121oveq1d 7427 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)))
123122eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ 𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
124119, 123rexeqbidv 3342 . . . . . . . . . . 11 (𝑦 = 𝐵 → (∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ ∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
125124rexbidv 3177 . . . . . . . . . 10 (𝑦 = 𝐵 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))))
126125abbidv 2800 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))} = {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))})
127118, 126uneq12d 4164 . . . . . . . 8 (𝑦 = 𝐵 → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) = ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}))
128 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) = (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
129128oveq1d 7427 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
130129oveq1d 7427 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)))
131130eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ 𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
132119, 131rexeqbidv 3342 . . . . . . . . . . 11 (𝑦 = 𝐵 → (∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ ∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
133132rexbidv 3177 . . . . . . . . . 10 (𝑦 = 𝐵 → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))))
134133abbidv 2800 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} = {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))})
135 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) = (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵))
136135oveq1d 7427 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
137136oveq1d 7427 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)))
138137eqeq2d 2742 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ 𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
139111, 138rexeqbidv 3342 . . . . . . . . . . 11 (𝑦 = 𝐵 → (∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ ∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
140139rexbidv 3177 . . . . . . . . . 10 (𝑦 = 𝐵 → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))))
141140abbidv 2800 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))} = {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})
142134, 141uneq12d 4164 . . . . . . . 8 (𝑦 = 𝐵 → ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}) = ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}))
143127, 142oveq12d 7430 . . . . . . 7 (𝑦 = 𝐵 → (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
144143adantl 481 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝑦 = 𝐵) → (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
145110, 144csbied 3931 . . . . 5 ((𝐴 No 𝐵 No ) → 𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})))
146 elun1 4176 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ( L ‘𝐴) → 𝑝 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
147146ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
148 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑝 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
149147, 148syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
150 snidg 4662 . . . . . . . . . . . . . . . . . . 19 (𝐵 No 𝐵 ∈ {𝐵})
151150adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → 𝐵 ∈ {𝐵})
152 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ {𝐵} → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
153151, 152syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
154153adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
155149, 154opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
156 leftirr 27730 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝐴 ∈ ( L ‘𝐴)
157 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝐴 → (𝑝 ∈ ( L ‘𝐴) ↔ 𝐴 ∈ ( L ‘𝐴)))
158156, 157mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝐴 → ¬ 𝑝 ∈ ( L ‘𝐴))
159158necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ ( L ‘𝐴) → 𝑝𝐴)
160159ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝𝐴)
161160orcd 870 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝𝐴𝐵𝐵))
162 vex 3477 . . . . . . . . . . . . . . . . . . 19 𝑝 ∈ V
163 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ V ∧ 𝐵 No ) → (⟨𝑝, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑝𝐴𝐵𝐵)))
164162, 163mpan 687 . . . . . . . . . . . . . . . . . 18 (𝐵 No → (⟨𝑝, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑝𝐴𝐵𝐵)))
165164ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (⟨𝑝, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑝𝐴𝐵𝐵)))
166161, 165mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
167 opex 5464 . . . . . . . . . . . . . . . . . 18 𝑝, 𝐵⟩ ∈ V
168167elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝑝, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑝, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
169168necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑝, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑝, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
170166, 169sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ¬ ⟨𝑝, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩})
171155, 170eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
172171fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑝, 𝐵⟩) = ( ·s ‘⟨𝑝, 𝐵⟩))
173 df-ov 7415 . . . . . . . . . . . . 13 (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑝, 𝐵⟩)
174 df-ov 7415 . . . . . . . . . . . . 13 (𝑝 ·s 𝐵) = ( ·s ‘⟨𝑝, 𝐵⟩)
175172, 173, 1743eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑝 ·s 𝐵))
176 snidg 4662 . . . . . . . . . . . . . . . . . . 19 (𝐴 No 𝐴 ∈ {𝐴})
177176adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝐵 No ) → 𝐴 ∈ {𝐴})
178 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
179177, 178syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝐵 No ) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
180179adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
181 elun1 4176 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ( L ‘𝐵) → 𝑞 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
182181ad2antll 726 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
183 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑞 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
184182, 183syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
185180, 184opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑞⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
186 leftirr 27730 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝐵 ∈ ( L ‘𝐵)
187 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝐵 → (𝑞 ∈ ( L ‘𝐵) ↔ 𝐵 ∈ ( L ‘𝐵)))
188186, 187mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝐵 → ¬ 𝑞 ∈ ( L ‘𝐵))
189188necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ( L ‘𝐵) → 𝑞𝐵)
190189ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞𝐵)
191190olcd 871 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝐴𝐴𝑞𝐵))
192 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑞 ∈ V) → (⟨𝐴, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑞𝐵)))
193192elvd 3480 . . . . . . . . . . . . . . . . . 18 (𝐴 No → (⟨𝐴, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑞𝐵)))
194193ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (⟨𝐴, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑞𝐵)))
195191, 194mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩)
196 opex 5464 . . . . . . . . . . . . . . . . . 18 𝐴, 𝑞⟩ ∈ V
197196elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝐴, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑞⟩ = ⟨𝐴, 𝐵⟩)
198197necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝐴, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩)
199195, 198sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ¬ ⟨𝐴, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩})
200185, 199eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑞⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
201200fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑞⟩) = ( ·s ‘⟨𝐴, 𝑞⟩))
202 df-ov 7415 . . . . . . . . . . . . 13 (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑞⟩)
203 df-ov 7415 . . . . . . . . . . . . 13 (𝐴 ·s 𝑞) = ( ·s ‘⟨𝐴, 𝑞⟩)
204201, 202, 2033eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞) = (𝐴 ·s 𝑞))
205175, 204oveq12d 7430 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)))
206149, 184opelxpd 5715 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝑞⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
207190olcd 871 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝𝐴𝑞𝐵))
208 vex 3477 . . . . . . . . . . . . . . . . 17 𝑞 ∈ V
209162, 208opthne 5482 . . . . . . . . . . . . . . . 16 (⟨𝑝, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑝𝐴𝑞𝐵))
210207, 209sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩)
211 opex 5464 . . . . . . . . . . . . . . . . 17 𝑝, 𝑞⟩ ∈ V
212211elsn 4643 . . . . . . . . . . . . . . . 16 (⟨𝑝, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑝, 𝑞⟩ = ⟨𝐴, 𝐵⟩)
213212necon3bbii 2987 . . . . . . . . . . . . . . 15 (¬ ⟨𝑝, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑝, 𝑞⟩ ≠ ⟨𝐴, 𝐵⟩)
214210, 213sylibr 233 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ¬ ⟨𝑝, 𝑞⟩ ∈ {⟨𝐴, 𝐵⟩})
215206, 214eldifd 3959 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ⟨𝑝, 𝑞⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
216215fvresd 6911 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑝, 𝑞⟩) = ( ·s ‘⟨𝑝, 𝑞⟩))
217 df-ov 7415 . . . . . . . . . . . 12 (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑝, 𝑞⟩)
218 df-ov 7415 . . . . . . . . . . . 12 (𝑝 ·s 𝑞) = ( ·s ‘⟨𝑝, 𝑞⟩)
219216, 217, 2183eqtr4g 2796 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞) = (𝑝 ·s 𝑞))
220205, 219oveq12d 7430 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
221220eqeq2d 2742 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
2222212rexbidva 3216 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
223222abbidv 2800 . . . . . . 7 ((𝐴 No 𝐵 No ) → {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} = {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))})
224 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ( R ‘𝐴) → 𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
225224ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
226 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
227225, 226syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
228153adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
229227, 228opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
230 rightirr 27731 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝐴 ∈ ( R ‘𝐴)
231 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝐴 → (𝑟 ∈ ( R ‘𝐴) ↔ 𝐴 ∈ ( R ‘𝐴)))
232230, 231mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘𝐴))
233232necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ( R ‘𝐴) → 𝑟𝐴)
234233ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟𝐴)
235234orcd 870 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟𝐴𝐵𝐵))
236 vex 3477 . . . . . . . . . . . . . . . . . . 19 𝑟 ∈ V
237 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ V ∧ 𝐵 No ) → (⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝐵𝐵)))
238236, 237mpan 687 . . . . . . . . . . . . . . . . . 18 (𝐵 No → (⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝐵𝐵)))
239238ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝐵𝐵)))
240235, 239mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
241 opex 5464 . . . . . . . . . . . . . . . . . 18 𝑟, 𝐵⟩ ∈ V
242241elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝑟, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑟, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
243242necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑟, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑟, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
244240, 243sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ¬ ⟨𝑟, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩})
245229, 244eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
246245fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝐵⟩) = ( ·s ‘⟨𝑟, 𝐵⟩))
247 df-ov 7415 . . . . . . . . . . . . 13 (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝐵⟩)
248 df-ov 7415 . . . . . . . . . . . . 13 (𝑟 ·s 𝐵) = ( ·s ‘⟨𝑟, 𝐵⟩)
249246, 247, 2483eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑟 ·s 𝐵))
250179adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
251 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ( R ‘𝐵) → 𝑠 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
252251ad2antll 726 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
253 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑠 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
254252, 253syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
255250, 254opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑠⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
256 rightirr 27731 . . . . . . . . . . . . . . . . . . . . 21 ¬ 𝐵 ∈ ( R ‘𝐵)
257 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝐵 → (𝑠 ∈ ( R ‘𝐵) ↔ 𝐵 ∈ ( R ‘𝐵)))
258256, 257mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝐵 → ¬ 𝑠 ∈ ( R ‘𝐵))
259258necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ( R ‘𝐵) → 𝑠𝐵)
260259ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠𝐵)
261260olcd 871 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝐴𝐴𝑠𝐵))
262 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑠 ∈ V) → (⟨𝐴, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑠𝐵)))
263262elvd 3480 . . . . . . . . . . . . . . . . . 18 (𝐴 No → (⟨𝐴, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑠𝐵)))
264263ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (⟨𝐴, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑠𝐵)))
265261, 264mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩)
266 opex 5464 . . . . . . . . . . . . . . . . . 18 𝐴, 𝑠⟩ ∈ V
267266elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝐴, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑠⟩ = ⟨𝐴, 𝐵⟩)
268267necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝐴, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩)
269265, 268sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ¬ ⟨𝐴, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩})
270255, 269eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑠⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
271270fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑠⟩) = ( ·s ‘⟨𝐴, 𝑠⟩))
272 df-ov 7415 . . . . . . . . . . . . 13 (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑠⟩)
273 df-ov 7415 . . . . . . . . . . . . 13 (𝐴 ·s 𝑠) = ( ·s ‘⟨𝐴, 𝑠⟩)
274271, 272, 2733eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠) = (𝐴 ·s 𝑠))
275249, 274oveq12d 7430 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)))
276227, 254opelxpd 5715 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝑠⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
277260olcd 871 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟𝐴𝑠𝐵))
278 vex 3477 . . . . . . . . . . . . . . . . 17 𝑠 ∈ V
279236, 278opthne 5482 . . . . . . . . . . . . . . . 16 (⟨𝑟, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑟𝐴𝑠𝐵))
280277, 279sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩)
281 opex 5464 . . . . . . . . . . . . . . . . 17 𝑟, 𝑠⟩ ∈ V
282281elsn 4643 . . . . . . . . . . . . . . . 16 (⟨𝑟, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑟, 𝑠⟩ = ⟨𝐴, 𝐵⟩)
283282necon3bbii 2987 . . . . . . . . . . . . . . 15 (¬ ⟨𝑟, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑟, 𝑠⟩ ≠ ⟨𝐴, 𝐵⟩)
284280, 283sylibr 233 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ¬ ⟨𝑟, 𝑠⟩ ∈ {⟨𝐴, 𝐵⟩})
285276, 284eldifd 3959 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ⟨𝑟, 𝑠⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
286285fvresd 6911 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝑠⟩) = ( ·s ‘⟨𝑟, 𝑠⟩))
287 df-ov 7415 . . . . . . . . . . . 12 (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑟, 𝑠⟩)
288 df-ov 7415 . . . . . . . . . . . 12 (𝑟 ·s 𝑠) = ( ·s ‘⟨𝑟, 𝑠⟩)
289286, 287, 2883eqtr4g 2796 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠) = (𝑟 ·s 𝑠))
290275, 289oveq12d 7430 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
291290eqeq2d 2742 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
2922912rexbidva 3216 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
293292abbidv 2800 . . . . . . 7 ((𝐴 No 𝐵 No ) → {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))} = {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})
294223, 293uneq12d 4164 . . . . . 6 ((𝐴 No 𝐵 No ) → ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) = ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}))
295 elun1 4176 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ( L ‘𝐴) → 𝑡 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
296295ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
297 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑡 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
298296, 297syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
299153adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
300298, 299opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
301 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝐴 → (𝑡 ∈ ( L ‘𝐴) ↔ 𝐴 ∈ ( L ‘𝐴)))
302156, 301mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝐴 → ¬ 𝑡 ∈ ( L ‘𝐴))
303302necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ( L ‘𝐴) → 𝑡𝐴)
304303ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡𝐴)
305304orcd 870 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡𝐴𝐵𝐵))
306 vex 3477 . . . . . . . . . . . . . . . . . . 19 𝑡 ∈ V
307 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ V ∧ 𝐵 No ) → (⟨𝑡, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑡𝐴𝐵𝐵)))
308306, 307mpan 687 . . . . . . . . . . . . . . . . . 18 (𝐵 No → (⟨𝑡, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑡𝐴𝐵𝐵)))
309308ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (⟨𝑡, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑡𝐴𝐵𝐵)))
310305, 309mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
311 opex 5464 . . . . . . . . . . . . . . . . . 18 𝑡, 𝐵⟩ ∈ V
312311elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝑡, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑡, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
313312necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑡, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑡, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
314310, 313sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ¬ ⟨𝑡, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩})
315300, 314eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
316315fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑡, 𝐵⟩) = ( ·s ‘⟨𝑡, 𝐵⟩))
317 df-ov 7415 . . . . . . . . . . . . 13 (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑡, 𝐵⟩)
318 df-ov 7415 . . . . . . . . . . . . 13 (𝑡 ·s 𝐵) = ( ·s ‘⟨𝑡, 𝐵⟩)
319316, 317, 3183eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑡 ·s 𝐵))
320179adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
321 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ( R ‘𝐵) → 𝑢 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
322321ad2antll 726 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
323 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑢 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
324322, 323syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
325320, 324opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑢⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
326 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝐵 → (𝑢 ∈ ( R ‘𝐵) ↔ 𝐵 ∈ ( R ‘𝐵)))
327256, 326mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝐵 → ¬ 𝑢 ∈ ( R ‘𝐵))
328327necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ( R ‘𝐵) → 𝑢𝐵)
329328ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢𝐵)
330329olcd 871 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝐴𝐴𝑢𝐵))
331 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑢 ∈ V) → (⟨𝐴, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑢𝐵)))
332331elvd 3480 . . . . . . . . . . . . . . . . . 18 (𝐴 No → (⟨𝐴, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑢𝐵)))
333332ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (⟨𝐴, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑢𝐵)))
334330, 333mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩)
335 opex 5464 . . . . . . . . . . . . . . . . . 18 𝐴, 𝑢⟩ ∈ V
336335elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝐴, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑢⟩ = ⟨𝐴, 𝐵⟩)
337336necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝐴, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩)
338334, 337sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ¬ ⟨𝐴, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩})
339325, 338eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝐴, 𝑢⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
340339fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑢⟩) = ( ·s ‘⟨𝐴, 𝑢⟩))
341 df-ov 7415 . . . . . . . . . . . . 13 (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑢⟩)
342 df-ov 7415 . . . . . . . . . . . . 13 (𝐴 ·s 𝑢) = ( ·s ‘⟨𝐴, 𝑢⟩)
343340, 341, 3423eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢) = (𝐴 ·s 𝑢))
344319, 343oveq12d 7430 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)))
345298, 324opelxpd 5715 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝑢⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
346329olcd 871 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡𝐴𝑢𝐵))
347 vex 3477 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
348306, 347opthne 5482 . . . . . . . . . . . . . . . 16 (⟨𝑡, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑡𝐴𝑢𝐵))
349346, 348sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩)
350 opex 5464 . . . . . . . . . . . . . . . . 17 𝑡, 𝑢⟩ ∈ V
351350elsn 4643 . . . . . . . . . . . . . . . 16 (⟨𝑡, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑡, 𝑢⟩ = ⟨𝐴, 𝐵⟩)
352351necon3bbii 2987 . . . . . . . . . . . . . . 15 (¬ ⟨𝑡, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑡, 𝑢⟩ ≠ ⟨𝐴, 𝐵⟩)
353349, 352sylibr 233 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ¬ ⟨𝑡, 𝑢⟩ ∈ {⟨𝐴, 𝐵⟩})
354345, 353eldifd 3959 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ⟨𝑡, 𝑢⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
355354fvresd 6911 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑡, 𝑢⟩) = ( ·s ‘⟨𝑡, 𝑢⟩))
356 df-ov 7415 . . . . . . . . . . . 12 (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑡, 𝑢⟩)
357 df-ov 7415 . . . . . . . . . . . 12 (𝑡 ·s 𝑢) = ( ·s ‘⟨𝑡, 𝑢⟩)
358355, 356, 3573eqtr4g 2796 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢) = (𝑡 ·s 𝑢))
359344, 358oveq12d 7430 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
360359eqeq2d 2742 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
3613602rexbidva 3216 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
362361abbidv 2800 . . . . . . 7 ((𝐴 No 𝐵 No ) → {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} = {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))})
363 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ( R ‘𝐴) → 𝑣 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
364363ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
365 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)) → 𝑣 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
366364, 365syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
367153adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐵 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
368366, 367opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝐵⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
369 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐴 → (𝑣 ∈ ( R ‘𝐴) ↔ 𝐴 ∈ ( R ‘𝐴)))
370230, 369mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → ¬ 𝑣 ∈ ( R ‘𝐴))
371370necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ ( R ‘𝐴) → 𝑣𝐴)
372371ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣𝐴)
373372orcd 870 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣𝐴𝐵𝐵))
374 vex 3477 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
375 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ V ∧ 𝐵 No ) → (⟨𝑣, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑣𝐴𝐵𝐵)))
376374, 375mpan 687 . . . . . . . . . . . . . . . . . 18 (𝐵 No → (⟨𝑣, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑣𝐴𝐵𝐵)))
377376ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (⟨𝑣, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑣𝐴𝐵𝐵)))
378373, 377mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
379 opex 5464 . . . . . . . . . . . . . . . . . 18 𝑣, 𝐵⟩ ∈ V
380379elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝑣, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑣, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
381380necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝑣, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑣, 𝐵⟩ ≠ ⟨𝐴, 𝐵⟩)
382378, 381sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ¬ ⟨𝑣, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩})
383368, 382eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝐵⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
384383fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑣, 𝐵⟩) = ( ·s ‘⟨𝑣, 𝐵⟩))
385 df-ov 7415 . . . . . . . . . . . . 13 (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑣, 𝐵⟩)
386 df-ov 7415 . . . . . . . . . . . . 13 (𝑣 ·s 𝐵) = ( ·s ‘⟨𝑣, 𝐵⟩)
387384, 385, 3863eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) = (𝑣 ·s 𝐵))
388179adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐴 ∈ ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
389 elun1 4176 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ( L ‘𝐵) → 𝑤 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
390389ad2antll 726 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
391 elun1 4176 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)) → 𝑤 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
392390, 391syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
393388, 392opelxpd 5715 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑤⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
394 eleq1 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝐵 → (𝑤 ∈ ( L ‘𝐵) ↔ 𝐵 ∈ ( L ‘𝐵)))
395186, 394mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝐵 → ¬ 𝑤 ∈ ( L ‘𝐵))
396395necon2ai 2969 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ( L ‘𝐵) → 𝑤𝐵)
397396ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤𝐵)
398397olcd 871 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝐴𝐴𝑤𝐵))
399 opthneg 5481 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤 ∈ V) → (⟨𝐴, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑤𝐵)))
400399elvd 3480 . . . . . . . . . . . . . . . . . 18 (𝐴 No → (⟨𝐴, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑤𝐵)))
401400ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (⟨𝐴, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝐴𝐴𝑤𝐵)))
402398, 401mpbird 257 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩)
403 opex 5464 . . . . . . . . . . . . . . . . . 18 𝐴, 𝑤⟩ ∈ V
404403elsn 4643 . . . . . . . . . . . . . . . . 17 (⟨𝐴, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑤⟩ = ⟨𝐴, 𝐵⟩)
405404necon3bbii 2987 . . . . . . . . . . . . . . . 16 (¬ ⟨𝐴, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩)
406402, 405sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ¬ ⟨𝐴, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩})
407393, 406eldifd 3959 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝐴, 𝑤⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
408407fvresd 6911 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑤⟩) = ( ·s ‘⟨𝐴, 𝑤⟩))
409 df-ov 7415 . . . . . . . . . . . . 13 (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝐴, 𝑤⟩)
410 df-ov 7415 . . . . . . . . . . . . 13 (𝐴 ·s 𝑤) = ( ·s ‘⟨𝐴, 𝑤⟩)
411408, 409, 4103eqtr4g 2796 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤) = (𝐴 ·s 𝑤))
412387, 411oveq12d 7430 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)))
413366, 392opelxpd 5715 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝑤⟩ ∈ (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
414397olcd 871 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣𝐴𝑤𝐵))
415 vex 3477 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
416374, 415opthne 5482 . . . . . . . . . . . . . . . 16 (⟨𝑣, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩ ↔ (𝑣𝐴𝑤𝐵))
417414, 416sylibr 233 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩)
418 opex 5464 . . . . . . . . . . . . . . . . 17 𝑣, 𝑤⟩ ∈ V
419418elsn 4643 . . . . . . . . . . . . . . . 16 (⟨𝑣, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑣, 𝑤⟩ = ⟨𝐴, 𝐵⟩)
420419necon3bbii 2987 . . . . . . . . . . . . . . 15 (¬ ⟨𝑣, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑣, 𝑤⟩ ≠ ⟨𝐴, 𝐵⟩)
421417, 420sylibr 233 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ¬ ⟨𝑣, 𝑤⟩ ∈ {⟨𝐴, 𝐵⟩})
422413, 421eldifd 3959 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ⟨𝑣, 𝑤⟩ ∈ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
423422fvresd 6911 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑣, 𝑤⟩) = ( ·s ‘⟨𝑣, 𝑤⟩))
424 df-ov 7415 . . . . . . . . . . . 12 (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤) = (( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))‘⟨𝑣, 𝑤⟩)
425 df-ov 7415 . . . . . . . . . . . 12 (𝑣 ·s 𝑤) = ( ·s ‘⟨𝑣, 𝑤⟩)
426423, 424, 4253eqtr4g 2796 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤) = (𝑣 ·s 𝑤))
427412, 426oveq12d 7430 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
428427eqeq2d 2742 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
4294282rexbidva 3216 . . . . . . . 8 ((𝐴 No 𝐵 No ) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
430429abbidv 2800 . . . . . . 7 ((𝐴 No 𝐵 No ) → {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))} = {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})
431362, 430uneq12d 4164 . . . . . 6 ((𝐴 No 𝐵 No ) → ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))}) = ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
432294, 431oveq12d 7430 . . . . 5 ((𝐴 No 𝐵 No ) → (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝐵) +s (𝐴( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
433109, 145, 4323eqtrd 2775 . . . 4 ((𝐴 No 𝐵 No ) → 𝐴 / 𝑥𝐵 / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
43469, 72, 4333eqtrd 2775 . . 3 ((𝐴 No 𝐵 No ) → (1st ‘⟨𝐴, 𝐵⟩) / 𝑥(2nd ‘⟨𝐴, 𝐵⟩) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞)) -s (𝑝( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠)) -s (𝑟( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢)) -s (𝑡( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑦) +s (𝑥( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤)) -s (𝑣( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))𝑤))})) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
43567, 434eqtrid 2783 . 2 ((𝐴 No 𝐵 No ) → (⟨𝐴, 𝐵⟩(𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))( ·s ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
4362, 435eqtrd 2771 1 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  {cab 2708  wne 2939  wrex 3069  Vcvv 3473  csb 3893  cdif 3945  cun 3946  {csn 4628  cop 4634   × cxp 5674  cres 5678  Fun wfun 6537   Fn wfn 6538  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978   No csur 27486   |s cscut 27628   L cleft 27685   R cright 27686   +s cadds 27789   -s csubs 27846   ·s cmuls 27919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490  df-bday 27491  df-sslt 27627  df-scut 27629  df-made 27687  df-old 27688  df-left 27690  df-right 27691  df-norec2 27779  df-muls 27920
This theorem is referenced by:  mulsval2  27924  muls01  27925  mulsrid  27926  mulsproplem10  27938  mulscom  27952  mulsuniflem  27962
  Copyright terms: Public domain W3C validator