| Metamath
Proof Explorer Theorem List (p. 280 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | addscan1 27901 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sleadd1d 27902 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
| Theorem | sleadd2d 27903 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd2d 27904 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd1d 27905 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | addscan2d 27906 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐶) = (𝐵 +s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addscan1d 27907 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addsuniflem 27908* | Lemma for addsunif 27909. State the whole theorem with extra distinct variable conditions. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsunif 27909* | Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsasslem1 27910* | Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}))) | ||
| Theorem | addsasslem2 27911* | Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))) | ||
| Theorem | addsass 27912 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | addsassd 27913 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | adds32d 27914 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) | ||
| Theorem | adds12d 27915 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (𝐵 +s (𝐴 +s 𝐶))) | ||
| Theorem | adds4d 27916 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐵 +s 𝐷))) | ||
| Theorem | adds42d 27917 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐷 +s 𝐵))) | ||
| Theorem | sltaddpos1d 27918 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐵 +s 𝐴))) | ||
| Theorem | sltaddpos2d 27919 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐴 +s 𝐵))) | ||
| Theorem | slt2addd 27920 | Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐶) & ⊢ (𝜑 → 𝐵 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) <s (𝐶 +s 𝐷)) | ||
| Theorem | addsgt0d 27921 | The sum of two positive surreals is positive. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → 0s <s 𝐵) ⇒ ⊢ (𝜑 → 0s <s (𝐴 +s 𝐵)) | ||
| Theorem | sltp1d 27922 | A surreal is less than itself plus one. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝐴 <s (𝐴 +s 1s )) | ||
| Theorem | addsbdaylem 27923* | Lemma for addsbday 27924. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝑦𝑂))) & ⊢ 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿 ∈ 𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Theorem | addsbday 27924 | The birthday of the sum of two surreals is less than or equal to the natural ordinal sum of their individual birthdays. Theorem 6.1 of [Gonshor] p. 95. (Contributed by Scott Fenton, 12-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( bday ‘(𝐴 +s 𝐵)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Syntax | cnegs 27925 | Declare the syntax for surreal negation. |
| class -us | ||
| Syntax | csubs 27926 | Declare the syntax for surreal subtraction. |
| class -s | ||
| Definition | df-negs 27927* | Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | ||
| Definition | df-subs 27928* | Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | ||
| Theorem | negsfn 27929 | Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us Fn No | ||
| Theorem | subsfn 27930 | Surreal subtraction is a function over pairs of surreals. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ -s Fn ( No × No ) | ||
| Theorem | negsval 27931 | The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negs0s 27932 | Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ( -us ‘ 0s ) = 0s | ||
| Theorem | negs1s 27933 | An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) | ||
| Theorem | negsproplem1 27934* | Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → (( bday ‘𝑋) ∪ ( bday ‘𝑌)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (( -us ‘𝑋) ∈ No ∧ (𝑋 <s 𝑌 → ( -us ‘𝑌) <s ( -us ‘𝑋)))) | ||
| Theorem | negsproplem2 27935* | Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsproplem3 27936* | Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negsproplem4 27937* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem5 27938* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem6 27939* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is the same age as 𝐵. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) = ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem7 27940* | Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsprop 27941 | Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴)))) | ||
| Theorem | negscl 27942 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | negscld 27943 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | sltnegim 27944 | The forward direction of the ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | negscut 27945 | The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negscut2 27946 | The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsid 27947 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsidd 27948 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsex 27949* | Every surreal has a negative. Note that this theorem, addscl 27888, addscom 27873, addsass 27912, addsrid 27871, and sltadd1im 27892 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) | ||
| Theorem | negnegs 27950 | A surreal is equal to the negative of its negative. Theorem 4(ii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | ||
| Theorem | sltneg 27951 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | sleneg 27952 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | sltnegd 27953 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | slenegd 27954 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | negs11 27955 | Surreal negation is one-to-one. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) = ( -us ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | negsdi 27956 | Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) | ||
| Theorem | slt0neg2d 27957 | Comparison of a surreal and its negative to zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ ( -us ‘𝐴) <s 0s )) | ||
| Theorem | negsf 27958 | Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No ⟶ No | ||
| Theorem | negsfo 27959 | Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No –onto→ No | ||
| Theorem | negsf1o 27960 | Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No –1-1-onto→ No | ||
| Theorem | negsunif 27961 | Uniformity property for surreal negation. If 𝐿 and 𝑅 are any cut that represents 𝐴, then they may be used instead of ( L ‘𝐴) and ( R ‘𝐴) in the definition of negation. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ 𝑅) |s ( -us “ 𝐿))) | ||
| Theorem | negsbdaylem 27962 | Lemma for negsbday 27963. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝐴 ∈ No → ( bday ‘( -us ‘𝐴)) ⊆ ( bday ‘𝐴)) | ||
| Theorem | negsbday 27963 | Negation of a surreal number preserves birthday. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝐴 ∈ No → ( bday ‘( -us ‘𝐴)) = ( bday ‘𝐴)) | ||
| Theorem | subsval 27964 | The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | ||
| Theorem | subsvald 27965 | The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | ||
| Theorem | subscl 27966 | Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) ∈ No ) | ||
| Theorem | subscld 27967 | Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) | ||
| Theorem | subsf 27968 | Function statement for surreal subtraction. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ -s :( No × No )⟶ No | ||
| Theorem | subsfo 27969 | Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ -s :( No × No )–onto→ No | ||
| Theorem | negsval2 27970 | Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = ( 0s -s 𝐴)) | ||
| Theorem | negsval2d 27971 | Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) = ( 0s -s 𝐴)) | ||
| Theorem | subsid1 27972 | Identity law for subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 -s 0s ) = 𝐴) | ||
| Theorem | subsid 27973 | Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 -s 𝐴) = 0s ) | ||
| Theorem | subadds 27974 | Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) | ||
| Theorem | subaddsd 27975 | Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) | ||
| Theorem | pncans 27976 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴) | ||
| Theorem | pncan3s 27977 | Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s (𝐵 -s 𝐴)) = 𝐵) | ||
| Theorem | pncan2s 27978 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐴) = 𝐵) | ||
| Theorem | npcans 27979 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 -s 𝐵) +s 𝐵) = 𝐴) | ||
| Theorem | sltsub1 27980 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2 27981 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | sltsub1d 27982 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 -s 𝐶) <s (𝐵 -s 𝐶))) | ||
| Theorem | sltsub2d 27983 | Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 -s 𝐵) <s (𝐶 -s 𝐴))) | ||
| Theorem | negsubsdi2d 27984 | Distribution of negative over subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘(𝐴 -s 𝐵)) = (𝐵 -s 𝐴)) | ||
| Theorem | addsubsassd 27985 | Associative-type law for surreal addition and subtraction. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = (𝐴 +s (𝐵 -s 𝐶))) | ||
| Theorem | addsubsd 27986 | Law for surreal addition and subtraction. (Contributed by Scott Fenton, 4-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) -s 𝐶) = ((𝐴 -s 𝐶) +s 𝐵)) | ||
| Theorem | sltsubsubbd 27987 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) <s (𝐶 -s 𝐷))) | ||
| Theorem | sltsubsub2bd 27988 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubsub3bd 27989 | Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) <s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) <s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsubbd 27990 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷))) | ||
| Theorem | slesubsub2bd 27991 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s (𝐶 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | slesubsub3bd 27992 | Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐶) ≤s (𝐵 -s 𝐷) ↔ (𝐷 -s 𝐶) ≤s (𝐵 -s 𝐴))) | ||
| Theorem | sltsubaddd 27993 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 +s 𝐵))) | ||
| Theorem | sltsubadd2d 27994 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐵 +s 𝐶))) | ||
| Theorem | sltaddsubd 27995 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐴 <s (𝐶 -s 𝐵))) | ||
| Theorem | sltaddsub2d 27996 | Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) <s 𝐶 ↔ 𝐵 <s (𝐶 -s 𝐴))) | ||
| Theorem | slesubaddd 27997 | Surreal less-than or equal relationship between subtraction and addition. (Contributed by Scott Fenton, 26-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) ≤s 𝐶 ↔ 𝐴 ≤s (𝐶 +s 𝐵))) | ||
| Theorem | subsubs4d 27998 | Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) -s 𝐶) = (𝐴 -s (𝐵 +s 𝐶))) | ||
| Theorem | subsubs2d 27999 | Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐵 -s 𝐶)) = (𝐴 +s (𝐶 -s 𝐵))) | ||
| Theorem | nncansd 28000 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s (𝐴 -s 𝐵)) = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |