![]() |
Metamath
Proof Explorer Theorem List (p. 280 of 478) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30148) |
![]() (30149-31671) |
![]() (31672-47753) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mirbtwni 27901 | Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) ⇒ ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) | ||
Theorem | mirbtwnb 27902 | Point inversion preserves betweenness. Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍)))) | ||
Theorem | mircgrs 27903 | Point inversion preserves congruence. Theorem 7.16 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑇)) ⇒ ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = ((𝑀‘𝑍) − (𝑀‘𝑇))) | ||
Theorem | mirmir2 27904 | Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑀‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘(𝑀‘𝑌))‘(𝑀‘𝑋))) | ||
Theorem | mirmot 27905 | Point investion is a motion of the geometric space. Theorem 7.14 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐺Ismt𝐺)) | ||
Theorem | mirln 27906 | If two points are on the same line, so is the mirror point of one through the other. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) | ||
Theorem | mirln2 27907 | If a point and its mirror point are both on the same line, so is the center of the point inversion. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
Theorem | mirconn 27908 | Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋))) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) | ||
Theorem | mirhl 27909 | If two points 𝑋 and 𝑌 are on the same half-line from 𝑍, the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋(𝐾‘𝑍)𝑌) ⇒ ⊢ (𝜑 → (𝑀‘𝑋)(𝐾‘(𝑀‘𝑍))(𝑀‘𝑌)) | ||
Theorem | mirbtwnhl 27910 | If the center of the point inversion 𝐴 is between two points 𝑋 and 𝑌, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝑌)) ⇒ ⊢ (𝜑 → (𝑍(𝐾‘𝐴)𝑋 ↔ (𝑀‘𝑍)(𝐾‘𝐴)𝑌)) | ||
Theorem | mirhl2 27911 | Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ≠ 𝐴) & ⊢ (𝜑 → 𝑌 ≠ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝑀‘𝑌))) ⇒ ⊢ (𝜑 → 𝑋(𝐾‘𝐴)𝑌) | ||
Theorem | mircgrextend 27912 | Link congruence over a pair of mirror points. cf tgcgrextend 27715. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐵) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝑋 − 𝑌)) ⇒ ⊢ (𝜑 → (𝐴 − (𝑀‘𝐴)) = (𝑋 − (𝑁‘𝑋))) | ||
Theorem | mirtrcgr 27913 | Point inversion of one point of a triangle around another point preserves triangle congruence. (Contributed by Thierry Arnoux, 4-Oct-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐵) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑋𝑌𝑍”〉) ⇒ ⊢ (𝜑 → 〈“(𝑀‘𝐴)𝐵𝐶”〉 ∼ 〈“(𝑁‘𝑋)𝑌𝑍”〉) | ||
Theorem | mirauto 27914 | Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑇) & ⊢ 𝑋 = (𝑀‘𝐴) & ⊢ 𝑌 = (𝑀‘𝐵) & ⊢ 𝑍 = (𝑀‘𝐶) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) | ||
Theorem | miduniq 27915 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) & ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | miduniq1 27916 | Uniqueness of the middle point, expressed with point inversion. Theorem 7.18 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = ((𝑆‘𝐵)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | miduniq2 27917 | If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | colmid 27918 | Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) ⇒ ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) | ||
Theorem | symquadlem 27919 | Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐷) & ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) & ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐷 − 𝐴)) & ⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → (𝑋 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 = (𝑀‘𝐶)) | ||
Theorem | krippenlem 27920 | Lemma for krippen 27921. We can assume krippen.7 "without loss of generality". (Contributed by Thierry Arnoux, 12-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) & ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) & ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) & ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) & ⊢ ≤ = (≤G‘𝐺) & ⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) | ||
Theorem | krippen 27921 | Krippenlemma (German for crib's lemma) Lemma 7.22 of [Schwabhauser] p. 53. proven by Gupta 1965 as Theorem 3.45. (Contributed by Thierry Arnoux, 12-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑋) & ⊢ 𝑁 = (𝑆‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) & ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) & ⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) & ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) & ⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) | ||
Theorem | midexlem 27922* | Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point 𝐶 equidistant to 𝐴 and 𝐵 This condition will be removed later. Because the operation notation (𝐴(midG‘𝐺)𝐵) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation 𝐵 = (𝑀‘𝐴) has to be used. See mideu 27968 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑀 = (𝑆‘𝑥) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) | ||
Syntax | crag 27923 | Declare the constant for the class of right angles. |
class ∟G | ||
Definition | df-rag 27924* | Define the class of right angles. Definition 8.1 of [Schwabhauser] p. 57. See israg 27927. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) | ||
Syntax | cperpg 27925 | Declare the constant for the perpendicular relation. |
class ⟂G | ||
Definition | df-perpg 27926* | Define the "perpendicular" relation. Definition 8.11 of [Schwabhauser] p. 59. See isperp 27942. (Contributed by Thierry Arnoux, 8-Sep-2019.) |
⊢ ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) | ||
Theorem | israg 27927 | Property for 3 points A, B, C to form a right angle. Definition 8.1 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) | ||
Theorem | ragcom 27928 | Commutative rule for right angles. Theorem 8.2 of [Schwabhauser] p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragcol 27929 | The right angle property is independent of the choice of point on one side. Theorem 8.3 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐷) ∨ 𝐵 = 𝐷)) ⇒ ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragmir 27930 | Right angle property is preserved by point inversion. Theorem 8.4 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵((𝑆‘𝐵)‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | mirrag 27931 | Right angle is conserved by point inversion. (Contributed by Thierry Arnoux, 3-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ 𝑀 = (𝑆‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → 〈“(𝑀‘𝐴)(𝑀‘𝐵)(𝑀‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragtrivb 27932 | Trivial right angle. Theorem 8.5 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐵”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragflat2 27933 | Deduce equality from two right angles. Theorem 8.6 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | ragflat 27934 | Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐶𝐵”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) | ||
Theorem | ragtriva 27935 | Trivial right angle. Theorem 8.8 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐴”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | ragflat3 27936 | Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐶 = 𝐵)) | ||
Theorem | ragcgr 27937 | Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ ∼ = (cgrG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) ⇒ ⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) | ||
Theorem | motrag 27938 | Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragncol 27939 | Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) | ||
Theorem | perpln1 27940 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | ||
Theorem | perpln2 27941 | Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | ||
Theorem | isperp 27942* | Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | ||
Theorem | perpcom 27943 | The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐵(⟂G‘𝐺)𝐴) | ||
Theorem | perpneq 27944 | Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | isperp2 27945* | Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) | ||
Theorem | isperp2d 27946 | One direction of isperp2 27945. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) ⇒ ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) | ||
Theorem | ragperp 27947 | Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ≠ 𝑋) & ⊢ (𝜑 → 𝑉 ≠ 𝑋) & ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) ⇒ ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) | ||
Theorem | footexALT 27948* | Alternative version of footex 27951 which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | footexlem1 27949 | Lemma for footex 27951. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 = (𝐸𝐿𝐹)) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) & ⊢ (𝜑 → 𝐸 ∈ (𝐹𝐼𝑌)) & ⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − 𝐶)) & ⊢ (𝜑 → 𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌)) & ⊢ (𝜑 → 𝑌 ∈ (𝐸𝐼𝑍)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝑅)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑅𝐼𝑄)) & ⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷)) & ⊢ (𝜑 → (𝑌 − 𝐷) = (𝑌 − 𝐶)) & ⊢ (𝜑 → 𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
Theorem | footexlem2 27950 | Lemma for footex 27951. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 = (𝐸𝐿𝐹)) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) & ⊢ (𝜑 → 𝐸 ∈ (𝐹𝐼𝑌)) & ⊢ (𝜑 → (𝐸 − 𝑌) = (𝐸 − 𝐶)) & ⊢ (𝜑 → 𝐶 = (((pInvG‘𝐺)‘𝑅)‘𝑌)) & ⊢ (𝜑 → 𝑌 ∈ (𝐸𝐼𝑍)) & ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝑅)) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ (𝑅𝐼𝑄)) & ⊢ (𝜑 → (𝑌 − 𝑄) = (𝑌 − 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ ((((pInvG‘𝐺)‘𝑍)‘𝑄)𝐼𝐷)) & ⊢ (𝜑 → (𝑌 − 𝐷) = (𝑌 − 𝐶)) & ⊢ (𝜑 → 𝐷 = (((pInvG‘𝐺)‘𝑋)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐶𝐿𝑋)(⟂G‘𝐺)𝐴) | ||
Theorem | footex 27951* | From a point 𝐶 outside of a line 𝐴, there exists a point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. This point is unique, see foot 27952. (Contributed by Thierry Arnoux, 19-Oct-2019.) (Revised by Thierry Arnoux, 1-Jul-2023.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | foot 27952* | From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴) | ||
Theorem | footne 27953 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) | ||
Theorem | footeq 27954 | Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴) & ⊢ (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | hlperpnel 27955 | A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) & ⊢ (𝜑 → 𝐴(⟂G‘𝐺)(𝑈𝐿𝑉)) & ⊢ (𝜑 → 𝑉(𝐾‘𝑈)𝑊) ⇒ ⊢ (𝜑 → ¬ 𝑊 ∈ 𝐴) | ||
Theorem | perprag 27956 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) | ||
Theorem | perpdragALT 27957 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | perpdrag 27958 | Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | ||
Theorem | colperp 27959 | Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐶)(⟂G‘𝐺)𝐷) | ||
Theorem | colperpexlem1 27960 | Lemma for colperp 27959. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝑁 = (𝑆‘𝐵) & ⊢ 𝐾 = (𝑆‘𝑄) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) ⇒ ⊢ (𝜑 → 〈“𝐵𝐴𝑄”〉 ∈ (∟G‘𝐺)) | ||
Theorem | colperpexlem2 27961 | Lemma for colperpex 27963. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ 𝑀 = (𝑆‘𝐴) & ⊢ 𝑁 = (𝑆‘𝐵) & ⊢ 𝐾 = (𝑆‘𝑄) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) & ⊢ (𝜑 → (𝐾‘(𝑀‘𝐶)) = (𝑁‘𝐶)) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝑄) | ||
Theorem | colperpexlem3 27962* | Lemma for colperpex 27963. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡 ∈ 𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) | ||
Theorem | colperpex 27963* | In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡 ∈ 𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝)))) | ||
Theorem | mideulem2 27964 | Lemma for opphllem 27965, which is itself used for mideu 27968. (Contributed by Thierry Arnoux, 19-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) & ⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝑇𝐼𝐵)) & ⊢ (𝜑 → 𝑋 ∈ (𝑅𝐼𝑂)) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ (((𝑆‘𝐴)‘𝑂)𝐼𝑍)) & ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑅)) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 = ((𝑆‘𝑀)‘𝑍)) ⇒ ⊢ (𝜑 → 𝐵 = 𝑀) | ||
Theorem | opphllem 27965* | Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 27966 and later for opphl 27984. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ (𝐵𝐼𝑄)) & ⊢ (𝜑 → (𝐴 − 𝑂) = (𝐵 − 𝑅)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐵 = ((𝑆‘𝑥)‘𝐴) ∧ 𝑂 = ((𝑆‘𝑥)‘𝑅))) | ||
Theorem | mideulem 27966* | Lemma for mideu 27968. We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑃) & ⊢ (𝜑 → 𝑇 ∈ 𝑃) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵)) & ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂)) & ⊢ (𝜑 → 𝑇 ∈ (𝐴𝐿𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (𝑄𝐼𝑂)) & ⊢ (𝜑 → (𝐴 − 𝑂)(≤G‘𝐺)(𝐵 − 𝑄)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | midex 27967* | Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | mideu 27968* | Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = (pInvG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑃 𝐵 = ((𝑆‘𝑥)‘𝐴)) | ||
Theorem | islnopp 27969* | The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | ||
Theorem | islnoppd 27970* | Deduce that 𝐴 and 𝐵 lie on opposite sides of line 𝐿. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐵)) ⇒ ⊢ (𝜑 → 𝐴𝑂𝐵) | ||
Theorem | oppne1 27971* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | ||
Theorem | oppne2 27972* | Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | ||
Theorem | oppne3 27973* | Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | oppcom 27974* | Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐴) | ||
Theorem | opptgdim2 27975* | If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → 𝐺DimTarskiG≥2) | ||
Theorem | oppnid 27976* | The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑂𝐴) | ||
Theorem | opphllem1 27977* | Lemma for opphl 27984. (Contributed by Thierry Arnoux, 20-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) & ⊢ (𝜑 → 𝐴 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ∈ (𝑅𝐼𝐴)) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | opphllem2 27978* | Lemma for opphl 27984. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑀 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) & ⊢ (𝜑 → 𝐴 ≠ 𝑅) & ⊢ (𝜑 → 𝐵 ≠ 𝑅) & ⊢ (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴))) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | opphllem3 27979* | Lemma for opphl 27984: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑅 ≠ 𝑆) & ⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) ⇒ ⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) | ||
Theorem | opphllem4 27980* | Lemma for opphl 27984. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑅 ≠ 𝑆) & ⊢ (𝜑 → (𝑆 − 𝐶)(≤G‘𝐺)(𝑅 − 𝐴)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) & ⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) ⇒ ⊢ (𝜑 → 𝑈𝑂𝑉) | ||
Theorem | opphllem5 27981* | Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈(𝐾‘𝑅)𝐴) & ⊢ (𝜑 → 𝑉(𝐾‘𝑆)𝐶) ⇒ ⊢ (𝜑 → 𝑈𝑂𝑉) | ||
Theorem | opphllem6 27982* | First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ 𝑁 = ((pInvG‘𝐺)‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝑆 ∈ 𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑅)) & ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐶𝐿𝑆)) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → (𝑁‘𝑅) = 𝑆) ⇒ ⊢ (𝜑 → (𝑈(𝐾‘𝑅)𝐴 ↔ (𝑁‘𝑈)(𝐾‘𝑆)𝐶)) | ||
Theorem | oppperpex 27983* | Restating colperpex 27963 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐺DimTarskiG≥2) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷 ∧ 𝐶𝑂𝑝)) | ||
Theorem | opphl 27984* | If two points 𝐴 and 𝐶 lie on opposite sides of a line 𝐷, then any point of the half line (𝑅𝐴) also lies opposite to 𝐶. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) & ⊢ (𝜑 → 𝑅 ∈ 𝐷) & ⊢ (𝜑 → 𝐴(𝐾‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑂𝐶) | ||
Theorem | outpasch 27985* | Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑅 ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝑅)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵𝐼𝐶)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥))) | ||
Theorem | hlpasch 27986* | An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐾 = (hlG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐷) & ⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼𝐶)) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ 𝑃 (𝐴(𝐾‘𝐵)𝑒 ∧ 𝑒 ∈ (𝑋𝐼𝐷))) | ||
Syntax | chpg 27987 | "Belong to the same open half-plane" relation for points in a geometry. |
class hpG | ||
Definition | df-hpg 27988* | Define the open half plane relation for a geometry 𝐺. Definition 9.7 of [Schwabhauser] p. 71. See hpgbr 27990 to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) | ||
Theorem | ishpg 27989* | Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) ⇒ ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) | ||
Theorem | hpgbr 27990* | Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) | ||
Theorem | hpgne1 27991* | Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | ||
Theorem | hpgne2 27992* | Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | ||
Theorem | lnopp2hpgb 27993* | Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐶) ⇒ ⊢ (𝜑 → (𝐵𝑂𝐶 ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) | ||
Theorem | lnoppnhpg 27994* | If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴𝑂𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) | ||
Theorem | hpgerlem 27995* | Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 𝐴𝑂𝑐) | ||
Theorem | hpgid 27996* | The half-plane relation is reflexive. Theorem 9.11 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐴) | ||
Theorem | hpgcom 27997* | The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) ⇒ ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐴) | ||
Theorem | hpgtr 27998* | The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) ⇒ ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) | ||
Theorem | colopp 27999* | Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷))) | ||
Theorem | colhp 28000* | Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ 𝐿 = (LineG‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) & ⊢ 𝐾 = (hlG‘𝐺) ⇒ ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾‘𝐶)𝐵 ∧ ¬ 𝐴 ∈ 𝐷))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |