| Metamath
Proof Explorer Theorem List (p. 280 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | noxpordfr 27901* | Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Fr ( No × No ) | ||
| Theorem | noxpordse 27902* | Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ 𝑆 Se ( No × No ) | ||
| Theorem | noxpordpred 27903* | Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) | ||
| Theorem | no2indslem 27904* | Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
| Theorem | no2inds 27905* | Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) & ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) | ||
| Theorem | norec2fn 27906 | The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ 𝐹 Fn ( No × No ) | ||
| Theorem | norec2ov 27907 | The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ 𝐹 = norec2 (𝐺) ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴𝐹𝐵) = (〈𝐴, 𝐵〉𝐺(𝐹 ↾ ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})))) | ||
| Theorem | no3inds 27908* | Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.) |
| ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝑒 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑓 → (𝜒 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜏 ↔ 𝜃)) & ⊢ (𝑏 = 𝑒 → (𝜂 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜁 ↔ 𝜃)) & ⊢ (𝑐 = 𝑓 → (𝜎 ↔ 𝜏)) & ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜌)) & ⊢ (𝑏 = 𝑌 → (𝜌 ↔ 𝜇)) & ⊢ (𝑐 = 𝑍 → (𝜇 ↔ 𝜆)) & ⊢ ((𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑)) ⇒ ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → 𝜆) | ||
| Syntax | cadds 27909 | Declare the syntax for surreal addition. |
| class +s | ||
| Definition | df-adds 27910* | Define surreal addition. This is the first of the field operations on the surreals. Definition from [Conway] p. 5. Definition from [Gonshor] p. 13. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st ‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st ‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd ‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) | ||
| Theorem | addsfn 27911 | Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ +s Fn ( No × No ) | ||
| Theorem | addsval 27912* | The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑦 = (𝑟 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘𝐵)𝑧 = (𝐴 +s 𝑟)}))) | ||
| Theorem | addsval2 27913* | The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝐴)𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝐵)𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsrid 27914 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s 0s ) = 𝐴) | ||
| Theorem | addsridd 27915 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 0s ) = 𝐴) | ||
| Theorem | addscom 27916 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
| Theorem | addscomd 27917 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | ||
| Theorem | addslid 27918 | Surreal addition to zero is identity. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( 0s +s 𝐴) = 𝐴) | ||
| Theorem | addsproplem1 27919* | Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8411 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → ((( bday ‘𝐴) +no ( bday ‘𝐵)) ∪ (( bday ‘𝐴) +no ( bday ‘𝐶))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍)))) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) ∈ No ∧ (𝐵 <s 𝐶 → (𝐵 +s 𝐴) <s (𝐶 +s 𝐴)))) | ||
| Theorem | addsproplem2 27920* | Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) | ||
| Theorem | addsproplem3 27921* | Lemma for surreal addition properties. Show the cut properties of surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addsproplem4 27922* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑌 is older than 𝑍. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) ∈ ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem5 27923* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem6 27924* | Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when 𝑌 and 𝑍 are the same age. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) = ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem7 27925* | Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsprop 27926 | Inductively show that surreal addition is closed and compatible with less-than. This proof follows from induction on the birthdays of the surreal numbers involved. This pattern occurs throughout surreal development. Theorem 3.1 of [Gonshor] p. 14. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ((𝑋 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑍 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))) | ||
| Theorem | addscutlem 27927* | Lemma for addscut 27928. Show the statement with some additional distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addscut 27928* | Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addscut2 27929* | Show that the cut involved in surreal addition is legitimate. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) | ||
| Theorem | addscld 27930 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) | ||
| Theorem | addscl 27931 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway[ p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | ||
| Theorem | addsf 27932 | Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ +s :( No × No )⟶ No | ||
| Theorem | addsfo 27933 | Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ +s :( No × No )–onto→ No | ||
| Theorem | peano2no 27934 | A theorem for surreals that is analogous to the second Peano postulate peano2 7884. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s 1s ) ∈ No ) | ||
| Theorem | sltadd1im 27935 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | sltadd2im 27936 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sleadd1im 27937 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶) → 𝐴 ≤s 𝐵)) | ||
| Theorem | sleadd2im 27938 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵) → 𝐴 ≤s 𝐵)) | ||
| Theorem | sleadd1 27939 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
| Theorem | sleadd2 27940 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd2 27941 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd1 27942 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | addscan2 27943 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) = (𝐵 +s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addscan1 27944 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sleadd1d 27945 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
| Theorem | sleadd2d 27946 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd2d 27947 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd1d 27948 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | addscan2d 27949 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐶) = (𝐵 +s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addscan1d 27950 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addsuniflem 27951* | Lemma for addsunif 27952. State the whole theorem with extra distinct variable conditions. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsunif 27952* | Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsasslem1 27953* | Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}))) | ||
| Theorem | addsasslem2 27954* | Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))) | ||
| Theorem | addsass 27955 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | addsassd 27956 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | adds32d 27957 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) | ||
| Theorem | adds12d 27958 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (𝐵 +s (𝐴 +s 𝐶))) | ||
| Theorem | adds4d 27959 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐵 +s 𝐷))) | ||
| Theorem | adds42d 27960 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐷 +s 𝐵))) | ||
| Theorem | sltaddpos1d 27961 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐵 +s 𝐴))) | ||
| Theorem | sltaddpos2d 27962 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐴 +s 𝐵))) | ||
| Theorem | slt2addd 27963 | Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐶) & ⊢ (𝜑 → 𝐵 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) <s (𝐶 +s 𝐷)) | ||
| Theorem | addsgt0d 27964 | The sum of two positive surreals is positive. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → 0s <s 𝐵) ⇒ ⊢ (𝜑 → 0s <s (𝐴 +s 𝐵)) | ||
| Theorem | sltp1d 27965 | A surreal is less than itself plus one. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝐴 <s (𝐴 +s 1s )) | ||
| Theorem | addsbdaylem 27966* | Lemma for addsbday 27967. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝑦𝑂))) & ⊢ 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿 ∈ 𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Theorem | addsbday 27967 | The birthday of the sum of two surreals is less than or equal to the natural ordinal sum of their individual birthdays. Theorem 6.1 of [Gonshor] p. 95. (Contributed by Scott Fenton, 12-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( bday ‘(𝐴 +s 𝐵)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Syntax | cnegs 27968 | Declare the syntax for surreal negation. |
| class -us | ||
| Syntax | csubs 27969 | Declare the syntax for surreal subtraction. |
| class -s | ||
| Definition | df-negs 27970* | Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | ||
| Definition | df-subs 27971* | Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | ||
| Theorem | negsfn 27972 | Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us Fn No | ||
| Theorem | subsfn 27973 | Surreal subtraction is a function over pairs of surreals. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ -s Fn ( No × No ) | ||
| Theorem | negsval 27974 | The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negs0s 27975 | Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ( -us ‘ 0s ) = 0s | ||
| Theorem | negs1s 27976 | An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) | ||
| Theorem | negsproplem1 27977* | Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → (( bday ‘𝑋) ∪ ( bday ‘𝑌)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (( -us ‘𝑋) ∈ No ∧ (𝑋 <s 𝑌 → ( -us ‘𝑌) <s ( -us ‘𝑋)))) | ||
| Theorem | negsproplem2 27978* | Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsproplem3 27979* | Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negsproplem4 27980* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem5 27981* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem6 27982* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is the same age as 𝐵. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) = ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem7 27983* | Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsprop 27984 | Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴)))) | ||
| Theorem | negscl 27985 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | negscld 27986 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | sltnegim 27987 | The forward direction of the ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | negscut 27988 | The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negscut2 27989 | The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsid 27990 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsidd 27991 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsex 27992* | Every surreal has a negative. Note that this theorem, addscl 27931, addscom 27916, addsass 27955, addsrid 27914, and sltadd1im 27935 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) | ||
| Theorem | negnegs 27993 | A surreal is equal to the negative of its negative. Theorem 4(ii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | ||
| Theorem | sltneg 27994 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | sleneg 27995 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | sltnegd 27996 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | slenegd 27997 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | negs11 27998 | Surreal negation is one-to-one. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) = ( -us ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | negsdi 27999 | Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) | ||
| Theorem | slt0neg2d 28000 | Comparison of a surreal and its negative to zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ ( -us ‘𝐴) <s 0s )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |