| Metamath
Proof Explorer Theorem List (p. 280 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | addsproplem3 27901* | Lemma for surreal addition properties. Show the cut properties of surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addsproplem4 27902* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑌 is older than 𝑍. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) ∈ ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem5 27903* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem6 27904* | Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when 𝑌 and 𝑍 are the same age. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) & ⊢ (𝜑 → ( bday ‘𝑌) = ( bday ‘𝑍)) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsproplem7 27905* | Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → 𝑍 ∈ No ) & ⊢ (𝜑 → 𝑌 <s 𝑍) ⇒ ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) | ||
| Theorem | addsprop 27906 | Inductively show that surreal addition is closed and compatible with less-than. This proof follows from induction on the birthdays of the surreal numbers involved. This pattern occurs throughout surreal development. Theorem 3.1 of [Gonshor] p. 14. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ((𝑋 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑍 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)))) | ||
| Theorem | addscutlem 27907* | Lemma for addscut 27908. Show the statement with some additional distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addscut 27908* | Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | ||
| Theorem | addscut2 27909* | Show that the cut involved in surreal addition is legitimate. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) | ||
| Theorem | addscld 27910 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) ⇒ ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) | ||
| Theorem | addscl 27911 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway[ p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | ||
| Theorem | addsf 27912 | Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ +s :( No × No )⟶ No | ||
| Theorem | addsfo 27913 | Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ +s :( No × No )–onto→ No | ||
| Theorem | peano2no 27914 | A theorem for surreals that is analogous to the second Peano postulate peano2 7830. (Contributed by Scott Fenton, 17-Mar-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s 1s ) ∈ No ) | ||
| Theorem | sltadd1im 27915 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | sltadd2im 27916 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 → (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sleadd1im 27917 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶) → 𝐴 ≤s 𝐵)) | ||
| Theorem | sleadd2im 27918 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵) → 𝐴 ≤s 𝐵)) | ||
| Theorem | sleadd1 27919 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
| Theorem | sleadd2 27920 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd2 27921 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd1 27922 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | addscan2 27923 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) = (𝐵 +s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addscan1 27924 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sleadd1d 27925 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | ||
| Theorem | sleadd2d 27926 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd2d 27927 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵))) | ||
| Theorem | sltadd1d 27928 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐵 +s 𝐶))) | ||
| Theorem | addscan2d 27929 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐶) = (𝐵 +s 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addscan1d 27930 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐶 +s 𝐴) = (𝐶 +s 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addsuniflem 27931* | Lemma for addsunif 27932. State the whole theorem with extra distinct variable conditions. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsunif 27932* | Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define 𝐴 and 𝐵 in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝑀 <<s 𝑆) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) & ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) = (({𝑦 ∣ ∃𝑙 ∈ 𝐿 𝑦 = (𝑙 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑚 ∈ 𝑀 𝑧 = (𝐴 +s 𝑚)}) |s ({𝑤 ∣ ∃𝑟 ∈ 𝑅 𝑤 = (𝑟 +s 𝐵)} ∪ {𝑡 ∣ ∃𝑠 ∈ 𝑆 𝑡 = (𝐴 +s 𝑠)}))) | ||
| Theorem | addsasslem1 27933* | Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = ((𝑙 +s 𝐵) +s 𝐶)} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = ((𝐴 +s 𝑚) +s 𝐶)}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = ((𝐴 +s 𝐵) +s 𝑛)}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = ((𝑝 +s 𝐵) +s 𝐶)} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = ((𝐴 +s 𝑞) +s 𝐶)}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = ((𝐴 +s 𝐵) +s 𝑟)}))) | ||
| Theorem | addsasslem2 27934* | Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = ((({𝑦 ∣ ∃𝑙 ∈ ( L ‘𝐴)𝑦 = (𝑙 +s (𝐵 +s 𝐶))} ∪ {𝑧 ∣ ∃𝑚 ∈ ( L ‘𝐵)𝑧 = (𝐴 +s (𝑚 +s 𝐶))}) ∪ {𝑤 ∣ ∃𝑛 ∈ ( L ‘𝐶)𝑤 = (𝐴 +s (𝐵 +s 𝑛))}) |s (({𝑎 ∣ ∃𝑝 ∈ ( R ‘𝐴)𝑎 = (𝑝 +s (𝐵 +s 𝐶))} ∪ {𝑏 ∣ ∃𝑞 ∈ ( R ‘𝐵)𝑏 = (𝐴 +s (𝑞 +s 𝐶))}) ∪ {𝑐 ∣ ∃𝑟 ∈ ( R ‘𝐶)𝑐 = (𝐴 +s (𝐵 +s 𝑟))}))) | ||
| Theorem | addsass 27935 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | addsassd 27936 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = (𝐴 +s (𝐵 +s 𝐶))) | ||
| Theorem | adds32d 27937 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s 𝐶) = ((𝐴 +s 𝐶) +s 𝐵)) | ||
| Theorem | adds12d 27938 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s (𝐵 +s 𝐶)) = (𝐵 +s (𝐴 +s 𝐶))) | ||
| Theorem | adds4d 27939 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐵 +s 𝐷))) | ||
| Theorem | adds42d 27940 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 +s 𝐵) +s (𝐶 +s 𝐷)) = ((𝐴 +s 𝐶) +s (𝐷 +s 𝐵))) | ||
| Theorem | sltaddpos1d 27941 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐵 +s 𝐴))) | ||
| Theorem | sltaddpos2d 27942 | Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s (𝐴 +s 𝐵))) | ||
| Theorem | slt2addd 27943 | Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) & ⊢ (𝜑 → 𝐷 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐶) & ⊢ (𝜑 → 𝐵 <s 𝐷) ⇒ ⊢ (𝜑 → (𝐴 +s 𝐵) <s (𝐶 +s 𝐷)) | ||
| Theorem | addsgt0d 27944 | The sum of two positive surreals is positive. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 0s <s 𝐴) & ⊢ (𝜑 → 0s <s 𝐵) ⇒ ⊢ (𝜑 → 0s <s (𝐴 +s 𝐵)) | ||
| Theorem | sltp1d 27945 | A surreal is less than itself plus one. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → 𝐴 <s (𝐴 +s 1s )) | ||
| Theorem | addsbdaylem 27946* | Lemma for addsbday 27947. (Contributed by Scott Fenton, 13-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))( bday ‘(𝐴 +s 𝑦𝑂)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝑦𝑂))) & ⊢ 𝑆 ⊆ (( L ‘𝐵) ∪ ( R ‘𝐵)) ⇒ ⊢ (𝜑 → ( bday “ {𝑧 ∣ ∃𝑦𝐿 ∈ 𝑆 𝑧 = (𝐴 +s 𝑦𝐿)}) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Theorem | addsbday 27947 | The birthday of the sum of two surreals is less than or equal to the natural ordinal sum of their individual birthdays. Theorem 6.1 of [Gonshor] p. 95. (Contributed by Scott Fenton, 12-Aug-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( bday ‘(𝐴 +s 𝐵)) ⊆ (( bday ‘𝐴) +no ( bday ‘𝐵))) | ||
| Syntax | cnegs 27948 | Declare the syntax for surreal negation. |
| class -us | ||
| Syntax | csubs 27949 | Declare the syntax for surreal subtraction. |
| class -s | ||
| Definition | df-negs 27950* | Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | ||
| Definition | df-subs 27951* | Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -s = (𝑥 ∈ No , 𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) | ||
| Theorem | negsfn 27952 | Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ -us Fn No | ||
| Theorem | subsfn 27953 | Surreal subtraction is a function over pairs of surreals. (Contributed by Scott Fenton, 22-Jan-2025.) |
| ⊢ -s Fn ( No × No ) | ||
| Theorem | negsval 27954 | The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negs0s 27955 | Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| ⊢ ( -us ‘ 0s ) = 0s | ||
| Theorem | negs1s 27956 | An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025.) |
| ⊢ ( -us ‘ 1s ) = (∅ |s { 0s }) | ||
| Theorem | negsproplem1 27957* | Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝑋 ∈ No ) & ⊢ (𝜑 → 𝑌 ∈ No ) & ⊢ (𝜑 → (( bday ‘𝑋) ∪ ( bday ‘𝑌)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵))) ⇒ ⊢ (𝜑 → (( -us ‘𝑋) ∈ No ∧ (𝑋 <s 𝑌 → ( -us ‘𝑌) <s ( -us ‘𝑋)))) | ||
| Theorem | negsproplem2 27958* | Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsproplem3 27959* | Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negsproplem4 27960* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem5 27961* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem6 27962* | Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is the same age as 𝐵. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) & ⊢ (𝜑 → ( bday ‘𝐴) = ( bday ‘𝐵)) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsproplem7 27963* | Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) & ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐴 <s 𝐵) ⇒ ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) | ||
| Theorem | negsprop 27964 | Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) ∈ No ∧ (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴)))) | ||
| Theorem | negscl 27965 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | negscld 27966 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) ∈ No ) | ||
| Theorem | sltnegim 27967 | The forward direction of the ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | negscut 27968 | The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | ||
| Theorem | negscut2 27969 | The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | ||
| Theorem | negsid 27970 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsidd 27971 | Surreal addition of a number and its negative. Theorem 4(iii) of [Conway] p. 17. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 +s ( -us ‘𝐴)) = 0s ) | ||
| Theorem | negsex 27972* | Every surreal has a negative. Note that this theorem, addscl 27911, addscom 27896, addsass 27935, addsrid 27894, and sltadd1im 27915 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) | ||
| Theorem | negnegs 27973 | A surreal is equal to the negative of its negative. Theorem 4(ii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) | ||
| Theorem | sltneg 27974 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | sleneg 27975 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | sltnegd 27976 | Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ ( -us ‘𝐵) <s ( -us ‘𝐴))) | ||
| Theorem | slenegd 27977 | Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ ( -us ‘𝐵) ≤s ( -us ‘𝐴))) | ||
| Theorem | negs11 27978 | Surreal negation is one-to-one. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (( -us ‘𝐴) = ( -us ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | negsdi 27979 | Distribution of surreal negative over addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( -us ‘(𝐴 +s 𝐵)) = (( -us ‘𝐴) +s ( -us ‘𝐵))) | ||
| Theorem | slt0neg2d 27980 | Comparison of a surreal and its negative to zero. (Contributed by Scott Fenton, 10-Mar-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( 0s <s 𝐴 ↔ ( -us ‘𝐴) <s 0s )) | ||
| Theorem | negsf 27981 | Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No ⟶ No | ||
| Theorem | negsfo 27982 | Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No –onto→ No | ||
| Theorem | negsf1o 27983 | Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ -us : No –1-1-onto→ No | ||
| Theorem | negsunif 27984 | Uniformity property for surreal negation. If 𝐿 and 𝑅 are any cut that represents 𝐴, then they may be used instead of ( L ‘𝐴) and ( R ‘𝐴) in the definition of negation. (Contributed by Scott Fenton, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐿 <<s 𝑅) & ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ 𝑅) |s ( -us “ 𝐿))) | ||
| Theorem | negsbdaylem 27985 | Lemma for negsbday 27986. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝐴 ∈ No → ( bday ‘( -us ‘𝐴)) ⊆ ( bday ‘𝐴)) | ||
| Theorem | negsbday 27986 | Negation of a surreal number preserves birthday. (Contributed by Scott Fenton, 8-Mar-2025.) |
| ⊢ (𝐴 ∈ No → ( bday ‘( -us ‘𝐴)) = ( bday ‘𝐴)) | ||
| Theorem | subsval 27987 | The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | ||
| Theorem | subsvald 27988 | The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) = (𝐴 +s ( -us ‘𝐵))) | ||
| Theorem | subscl 27989 | Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) ∈ No ) | ||
| Theorem | subscld 27990 | Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) ⇒ ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) | ||
| Theorem | subsf 27991 | Function statement for surreal subtraction. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ -s :( No × No )⟶ No | ||
| Theorem | subsfo 27992 | Surreal subtraction is an onto function. (Contributed by Scott Fenton, 17-May-2025.) |
| ⊢ -s :( No × No )–onto→ No | ||
| Theorem | negsval2 27993 | Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = ( 0s -s 𝐴)) | ||
| Theorem | negsval2d 27994 | Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) ⇒ ⊢ (𝜑 → ( -us ‘𝐴) = ( 0s -s 𝐴)) | ||
| Theorem | subsid1 27995 | Identity law for subtraction. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 -s 0s ) = 𝐴) | ||
| Theorem | subsid 27996 | Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ No → (𝐴 -s 𝐴) = 0s ) | ||
| Theorem | subadds 27997 | Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 3-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) | ||
| Theorem | subaddsd 27998 | Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ No ) & ⊢ (𝜑 → 𝐵 ∈ No ) & ⊢ (𝜑 → 𝐶 ∈ No ) ⇒ ⊢ (𝜑 → ((𝐴 -s 𝐵) = 𝐶 ↔ (𝐵 +s 𝐶) = 𝐴)) | ||
| Theorem | pncans 27999 | Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴) | ||
| Theorem | pncan3s 28000 | Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s (𝐵 -s 𝐴)) = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |