![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulsfn | Structured version Visualization version GIF version |
Description: Surreal multiplication is a function over surreals. (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
mulsfn | ⊢ ·s Fn ( No × No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-muls 28153 | . 2 ⊢ ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) | |
2 | 1 | norec2fn 28009 | 1 ⊢ ·s Fn ( No × No ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cab 2717 ∃wrex 3076 Vcvv 3488 ⦋csb 3921 ∪ cun 3974 × cxp 5698 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 1st c1st 8030 2nd c2nd 8031 No csur 27704 |s cscut 27847 L cleft 27904 R cright 27905 +s cadds 28012 -s csubs 28072 ·s cmuls 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-1o 8524 df-2o 8525 df-no 27707 df-slt 27708 df-bday 27709 df-sslt 27846 df-scut 27848 df-made 27906 df-old 27907 df-left 27909 df-right 27910 df-norec2 28002 df-muls 28153 |
This theorem is referenced by: mulsval 28155 |
Copyright terms: Public domain | W3C validator |