Detailed syntax breakdown of Definition df-musyn
Step | Hyp | Ref
| Expression |
1 | | cusyn 33574 |
. 2
class
mUSyn |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vv |
. . . 4
setvar 𝑣 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
6 | | cmuv 33567 |
. . . . 5
class
mUV |
7 | 5, 6 | cfv 6433 |
. . . 4
class
(mUV‘𝑡) |
8 | 4 | cv 1538 |
. . . . . . 7
class 𝑣 |
9 | | c1st 7829 |
. . . . . . 7
class
1st |
10 | 8, 9 | cfv 6433 |
. . . . . 6
class
(1st ‘𝑣) |
11 | | cmsy 33550 |
. . . . . . 7
class
mSyn |
12 | 5, 11 | cfv 6433 |
. . . . . 6
class
(mSyn‘𝑡) |
13 | 10, 12 | cfv 6433 |
. . . . 5
class
((mSyn‘𝑡)‘(1st ‘𝑣)) |
14 | | c2nd 7830 |
. . . . . 6
class
2nd |
15 | 8, 14 | cfv 6433 |
. . . . 5
class
(2nd ‘𝑣) |
16 | 13, 15 | cop 4567 |
. . . 4
class
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉 |
17 | 4, 7, 16 | cmpt 5157 |
. . 3
class (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉) |
18 | 2, 3, 17 | cmpt 5157 |
. 2
class (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) |
19 | 1, 18 | wceq 1539 |
1
wff mUSyn =
(𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) |