Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-musyn Structured version   Visualization version   GIF version

Definition df-musyn 33585
Description: Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-musyn mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩))
Distinct variable group:   𝑣,𝑡

Detailed syntax breakdown of Definition df-musyn
StepHypRef Expression
1 cusyn 33574 . 2 class mUSyn
2 vt . . 3 setvar 𝑡
3 cvv 3432 . . 3 class V
4 vv . . . 4 setvar 𝑣
52cv 1538 . . . . 5 class 𝑡
6 cmuv 33567 . . . . 5 class mUV
75, 6cfv 6433 . . . 4 class (mUV‘𝑡)
84cv 1538 . . . . . . 7 class 𝑣
9 c1st 7829 . . . . . . 7 class 1st
108, 9cfv 6433 . . . . . 6 class (1st𝑣)
11 cmsy 33550 . . . . . . 7 class mSyn
125, 11cfv 6433 . . . . . 6 class (mSyn‘𝑡)
1310, 12cfv 6433 . . . . 5 class ((mSyn‘𝑡)‘(1st𝑣))
14 c2nd 7830 . . . . . 6 class 2nd
158, 14cfv 6433 . . . . 5 class (2nd𝑣)
1613, 15cop 4567 . . . 4 class ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩
174, 7, 16cmpt 5157 . . 3 class (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩)
182, 3, 17cmpt 5157 . 2 class (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩))
191, 18wceq 1539 1 wff mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator