Detailed syntax breakdown of Definition df-musyn
| Step | Hyp | Ref
| Expression |
| 1 | | cusyn 35601 |
. 2
class
mUSyn |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3455 |
. . 3
class
V |
| 4 | | vv |
. . . 4
setvar 𝑣 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑡 |
| 6 | | cmuv 35594 |
. . . . 5
class
mUV |
| 7 | 5, 6 | cfv 6519 |
. . . 4
class
(mUV‘𝑡) |
| 8 | 4 | cv 1539 |
. . . . . . 7
class 𝑣 |
| 9 | | c1st 7975 |
. . . . . . 7
class
1st |
| 10 | 8, 9 | cfv 6519 |
. . . . . 6
class
(1st ‘𝑣) |
| 11 | | cmsy 35577 |
. . . . . . 7
class
mSyn |
| 12 | 5, 11 | cfv 6519 |
. . . . . 6
class
(mSyn‘𝑡) |
| 13 | 10, 12 | cfv 6519 |
. . . . 5
class
((mSyn‘𝑡)‘(1st ‘𝑣)) |
| 14 | | c2nd 7976 |
. . . . . 6
class
2nd |
| 15 | 8, 14 | cfv 6519 |
. . . . 5
class
(2nd ‘𝑣) |
| 16 | 13, 15 | cop 4603 |
. . . 4
class
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉 |
| 17 | 4, 7, 16 | cmpt 5196 |
. . 3
class (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉) |
| 18 | 2, 3, 17 | cmpt 5196 |
. 2
class (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) |
| 19 | 1, 18 | wceq 1540 |
1
wff mUSyn =
(𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦
〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) |