Detailed syntax breakdown of Definition df-mdl
| Step | Hyp | Ref
| Expression |
| 1 | | cmdl 35600 |
. 2
class
mMdl |
| 2 | | vu |
. . . . . . . . . . . 12
setvar 𝑢 |
| 3 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑢 |
| 4 | | vt |
. . . . . . . . . . . . . 14
setvar 𝑡 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑡 |
| 6 | | cmtc 35453 |
. . . . . . . . . . . . 13
class
mTC |
| 7 | 5, 6 | cfv 6519 |
. . . . . . . . . . . 12
class
(mTC‘𝑡) |
| 8 | | cvv 3455 |
. . . . . . . . . . . 12
class
V |
| 9 | 7, 8 | cxp 5644 |
. . . . . . . . . . 11
class
((mTC‘𝑡)
× V) |
| 10 | 3, 9 | wss 3922 |
. . . . . . . . . 10
wff 𝑢 ⊆ ((mTC‘𝑡) × V) |
| 11 | | vf |
. . . . . . . . . . . 12
setvar 𝑓 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑓 |
| 13 | | cmfr 35598 |
. . . . . . . . . . . 12
class
mFRel |
| 14 | 5, 13 | cfv 6519 |
. . . . . . . . . . 11
class
(mFRel‘𝑡) |
| 15 | 12, 14 | wcel 2109 |
. . . . . . . . . 10
wff 𝑓 ∈ (mFRel‘𝑡) |
| 16 | | vn |
. . . . . . . . . . . 12
setvar 𝑛 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . 11
class 𝑛 |
| 18 | | vv |
. . . . . . . . . . . . . 14
setvar 𝑣 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑣 |
| 20 | | cmex 35456 |
. . . . . . . . . . . . . 14
class
mEx |
| 21 | 5, 20 | cfv 6519 |
. . . . . . . . . . . . 13
class
(mEx‘𝑡) |
| 22 | 19, 21 | cxp 5644 |
. . . . . . . . . . . 12
class (𝑣 × (mEx‘𝑡)) |
| 23 | | cpm 8804 |
. . . . . . . . . . . 12
class
↑pm |
| 24 | 3, 22, 23 | co 7394 |
. . . . . . . . . . 11
class (𝑢 ↑pm (𝑣 × (mEx‘𝑡))) |
| 25 | 17, 24 | wcel 2109 |
. . . . . . . . . 10
wff 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡))) |
| 26 | 10, 15, 25 | w3a 1086 |
. . . . . . . . 9
wff (𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) |
| 27 | | vm |
. . . . . . . . . . . . . . . . . 18
setvar 𝑚 |
| 28 | 27 | cv 1539 |
. . . . . . . . . . . . . . . . 17
class 𝑚 |
| 29 | | ve |
. . . . . . . . . . . . . . . . . 18
setvar 𝑒 |
| 30 | 29 | cv 1539 |
. . . . . . . . . . . . . . . . 17
class 𝑒 |
| 31 | 28, 30 | cop 4603 |
. . . . . . . . . . . . . . . 16
class
〈𝑚, 𝑒〉 |
| 32 | 31 | csn 4597 |
. . . . . . . . . . . . . . 15
class
{〈𝑚, 𝑒〉} |
| 33 | 17, 32 | cima 5649 |
. . . . . . . . . . . . . 14
class (𝑛 “ {〈𝑚, 𝑒〉}) |
| 34 | | c1st 7975 |
. . . . . . . . . . . . . . . . 17
class
1st |
| 35 | 30, 34 | cfv 6519 |
. . . . . . . . . . . . . . . 16
class
(1st ‘𝑒) |
| 36 | 35 | csn 4597 |
. . . . . . . . . . . . . . 15
class
{(1st ‘𝑒)} |
| 37 | 3, 36 | cima 5649 |
. . . . . . . . . . . . . 14
class (𝑢 “ {(1st
‘𝑒)}) |
| 38 | 33, 37 | wss 3922 |
. . . . . . . . . . . . 13
wff (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) |
| 39 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 40 | 39 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 41 | 38, 29, 40 | wral 3046 |
. . . . . . . . . . . 12
wff
∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) |
| 42 | | vy |
. . . . . . . . . . . . . . . . 17
setvar 𝑦 |
| 43 | 42 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑦 |
| 44 | | cmvh 35461 |
. . . . . . . . . . . . . . . . 17
class
mVH |
| 45 | 5, 44 | cfv 6519 |
. . . . . . . . . . . . . . . 16
class
(mVH‘𝑡) |
| 46 | 43, 45 | cfv 6519 |
. . . . . . . . . . . . . . 15
class
((mVH‘𝑡)‘𝑦) |
| 47 | 28, 46 | cop 4603 |
. . . . . . . . . . . . . 14
class
〈𝑚,
((mVH‘𝑡)‘𝑦)〉 |
| 48 | 43, 28 | cfv 6519 |
. . . . . . . . . . . . . 14
class (𝑚‘𝑦) |
| 49 | 47, 48, 17 | wbr 5115 |
. . . . . . . . . . . . 13
wff 〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) |
| 50 | | cmvar 35450 |
. . . . . . . . . . . . . 14
class
mVR |
| 51 | 5, 50 | cfv 6519 |
. . . . . . . . . . . . 13
class
(mVR‘𝑡) |
| 52 | 49, 42, 51 | wral 3046 |
. . . . . . . . . . . 12
wff
∀𝑦 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) |
| 53 | | vd |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑑 |
| 54 | 53 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑑 |
| 55 | | vh |
. . . . . . . . . . . . . . . . . . 19
setvar ℎ |
| 56 | 55 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class ℎ |
| 57 | | va |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑎 |
| 58 | 57 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑎 |
| 59 | 54, 56, 58 | cotp 4605 |
. . . . . . . . . . . . . . . . 17
class
〈𝑑, ℎ, 𝑎〉 |
| 60 | | cmax 35454 |
. . . . . . . . . . . . . . . . . 18
class
mAx |
| 61 | 5, 60 | cfv 6519 |
. . . . . . . . . . . . . . . . 17
class
(mAx‘𝑡) |
| 62 | 59, 61 | wcel 2109 |
. . . . . . . . . . . . . . . 16
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) |
| 63 | | vz |
. . . . . . . . . . . . . . . . . . . . . . 23
setvar 𝑧 |
| 64 | 63 | cv 1539 |
. . . . . . . . . . . . . . . . . . . . . 22
class 𝑧 |
| 65 | 43, 64, 54 | wbr 5115 |
. . . . . . . . . . . . . . . . . . . . 21
wff 𝑦𝑑𝑧 |
| 66 | 64, 28 | cfv 6519 |
. . . . . . . . . . . . . . . . . . . . . 22
class (𝑚‘𝑧) |
| 67 | 48, 66, 12 | wbr 5115 |
. . . . . . . . . . . . . . . . . . . . 21
wff (𝑚‘𝑦)𝑓(𝑚‘𝑧) |
| 68 | 65, 67 | wi 4 |
. . . . . . . . . . . . . . . . . . . 20
wff (𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) |
| 69 | 68, 63 | wal 1538 |
. . . . . . . . . . . . . . . . . . 19
wff
∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) |
| 70 | 69, 42 | wal 1538 |
. . . . . . . . . . . . . . . . . 18
wff
∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) |
| 71 | 17 | cdm 5646 |
. . . . . . . . . . . . . . . . . . . 20
class dom 𝑛 |
| 72 | 28 | csn 4597 |
. . . . . . . . . . . . . . . . . . . 20
class {𝑚} |
| 73 | 71, 72 | cima 5649 |
. . . . . . . . . . . . . . . . . . 19
class (dom
𝑛 “ {𝑚}) |
| 74 | 56, 73 | wss 3922 |
. . . . . . . . . . . . . . . . . 18
wff ℎ ⊆ (dom 𝑛 “ {𝑚}) |
| 75 | 70, 74 | wa 395 |
. . . . . . . . . . . . . . . . 17
wff
(∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) |
| 76 | 28, 58, 71 | wbr 5115 |
. . . . . . . . . . . . . . . . 17
wff 𝑚dom 𝑛 𝑎 |
| 77 | 75, 76 | wi 4 |
. . . . . . . . . . . . . . . 16
wff
((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎) |
| 78 | 62, 77 | wi 4 |
. . . . . . . . . . . . . . 15
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) |
| 79 | 78, 57 | wal 1538 |
. . . . . . . . . . . . . 14
wff
∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) |
| 80 | 79, 55 | wal 1538 |
. . . . . . . . . . . . 13
wff
∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) |
| 81 | 80, 53 | wal 1538 |
. . . . . . . . . . . 12
wff
∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) |
| 82 | 41, 52, 81 | w3a 1086 |
. . . . . . . . . . 11
wff
(∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) |
| 83 | | vs |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑠 |
| 84 | 83 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑠 |
| 85 | 84, 28 | cop 4603 |
. . . . . . . . . . . . . . . . 17
class
〈𝑠, 𝑚〉 |
| 86 | | cmvsb 35596 |
. . . . . . . . . . . . . . . . . 18
class
mVSubst |
| 87 | 5, 86 | cfv 6519 |
. . . . . . . . . . . . . . . . 17
class
(mVSubst‘𝑡) |
| 88 | 85, 43, 87 | wbr 5115 |
. . . . . . . . . . . . . . . 16
wff 〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 |
| 89 | 30, 84 | cfv 6519 |
. . . . . . . . . . . . . . . . . . . 20
class (𝑠‘𝑒) |
| 90 | 28, 89 | cop 4603 |
. . . . . . . . . . . . . . . . . . 19
class
〈𝑚, (𝑠‘𝑒)〉 |
| 91 | 90 | csn 4597 |
. . . . . . . . . . . . . . . . . 18
class
{〈𝑚, (𝑠‘𝑒)〉} |
| 92 | 17, 91 | cima 5649 |
. . . . . . . . . . . . . . . . 17
class (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) |
| 93 | 43, 30 | cop 4603 |
. . . . . . . . . . . . . . . . . . 19
class
〈𝑦, 𝑒〉 |
| 94 | 93 | csn 4597 |
. . . . . . . . . . . . . . . . . 18
class
{〈𝑦, 𝑒〉} |
| 95 | 17, 94 | cima 5649 |
. . . . . . . . . . . . . . . . 17
class (𝑛 “ {〈𝑦, 𝑒〉}) |
| 96 | 92, 95 | wceq 1540 |
. . . . . . . . . . . . . . . 16
wff (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉}) |
| 97 | 88, 96 | wi 4 |
. . . . . . . . . . . . . . 15
wff
(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) |
| 98 | 97, 42 | wal 1538 |
. . . . . . . . . . . . . 14
wff
∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) |
| 99 | 98, 29, 21 | wral 3046 |
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
(mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) |
| 100 | | cmsub 35460 |
. . . . . . . . . . . . . . 15
class
mSubst |
| 101 | 5, 100 | cfv 6519 |
. . . . . . . . . . . . . 14
class
(mSubst‘𝑡) |
| 102 | 101 | crn 5647 |
. . . . . . . . . . . . 13
class ran
(mSubst‘𝑡) |
| 103 | 99, 83, 102 | wral 3046 |
. . . . . . . . . . . 12
wff
∀𝑠 ∈ ran
(mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) |
| 104 | | cmvrs 35458 |
. . . . . . . . . . . . . . . . . . 19
class
mVars |
| 105 | 5, 104 | cfv 6519 |
. . . . . . . . . . . . . . . . . 18
class
(mVars‘𝑡) |
| 106 | 30, 105 | cfv 6519 |
. . . . . . . . . . . . . . . . 17
class
((mVars‘𝑡)‘𝑒) |
| 107 | 28, 106 | cres 5648 |
. . . . . . . . . . . . . . . 16
class (𝑚 ↾ ((mVars‘𝑡)‘𝑒)) |
| 108 | | vp |
. . . . . . . . . . . . . . . . . 18
setvar 𝑝 |
| 109 | 108 | cv 1539 |
. . . . . . . . . . . . . . . . 17
class 𝑝 |
| 110 | 109, 106 | cres 5648 |
. . . . . . . . . . . . . . . 16
class (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) |
| 111 | 107, 110 | wceq 1540 |
. . . . . . . . . . . . . . 15
wff (𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) |
| 112 | 109, 30 | cop 4603 |
. . . . . . . . . . . . . . . . . 18
class
〈𝑝, 𝑒〉 |
| 113 | 112 | csn 4597 |
. . . . . . . . . . . . . . . . 17
class
{〈𝑝, 𝑒〉} |
| 114 | 17, 113 | cima 5649 |
. . . . . . . . . . . . . . . 16
class (𝑛 “ {〈𝑝, 𝑒〉}) |
| 115 | 33, 114 | wceq 1540 |
. . . . . . . . . . . . . . 15
wff (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉}) |
| 116 | 111, 115 | wi 4 |
. . . . . . . . . . . . . 14
wff ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) |
| 117 | 116, 29, 40 | wral 3046 |
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) |
| 118 | 117, 108,
19 | wral 3046 |
. . . . . . . . . . . 12
wff
∀𝑝 ∈
𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) |
| 119 | 28, 106 | cima 5649 |
. . . . . . . . . . . . . . . 16
class (𝑚 “ ((mVars‘𝑡)‘𝑒)) |
| 120 | 43 | csn 4597 |
. . . . . . . . . . . . . . . . 17
class {𝑦} |
| 121 | 12, 120 | cima 5649 |
. . . . . . . . . . . . . . . 16
class (𝑓 “ {𝑦}) |
| 122 | 119, 121 | wss 3922 |
. . . . . . . . . . . . . . 15
wff (𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) |
| 123 | 33, 121 | wss 3922 |
. . . . . . . . . . . . . . 15
wff (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}) |
| 124 | 122, 123 | wi 4 |
. . . . . . . . . . . . . 14
wff ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) |
| 125 | 124, 29, 40 | wral 3046 |
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) |
| 126 | 125, 42, 3 | wral 3046 |
. . . . . . . . . . . 12
wff
∀𝑦 ∈
𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) |
| 127 | 103, 118,
126 | w3a 1086 |
. . . . . . . . . . 11
wff
(∀𝑠 ∈
ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))) |
| 128 | 82, 127 | wa 395 |
. . . . . . . . . 10
wff
((∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))) |
| 129 | 128, 27, 19 | wral 3046 |
. . . . . . . . 9
wff
∀𝑚 ∈
𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))) |
| 130 | 26, 129 | wa 395 |
. . . . . . . 8
wff ((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 131 | | cmfsh 35597 |
. . . . . . . . 9
class
mFresh |
| 132 | 5, 131 | cfv 6519 |
. . . . . . . 8
class
(mFresh‘𝑡) |
| 133 | 130, 11, 132 | wsbc 3761 |
. . . . . . 7
wff
[(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 134 | | cmevl 35599 |
. . . . . . . 8
class
mEval |
| 135 | 5, 134 | cfv 6519 |
. . . . . . 7
class
(mEval‘𝑡) |
| 136 | 133, 16, 135 | wsbc 3761 |
. . . . . 6
wff
[(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 137 | | cmvl 35595 |
. . . . . . 7
class
mVL |
| 138 | 5, 137 | cfv 6519 |
. . . . . 6
class
(mVL‘𝑡) |
| 139 | 136, 18, 138 | wsbc 3761 |
. . . . 5
wff
[(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 140 | 139, 39, 21 | wsbc 3761 |
. . . 4
wff
[(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 141 | | cmuv 35594 |
. . . . 5
class
mUV |
| 142 | 5, 141 | cfv 6519 |
. . . 4
class
(mUV‘𝑡) |
| 143 | 140, 2, 142 | wsbc 3761 |
. . 3
wff
[(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) |
| 144 | | cmfs 35465 |
. . 3
class
mFS |
| 145 | 143, 4, 144 | crab 3411 |
. 2
class {𝑡 ∈ mFS ∣
[(mUV‘𝑡) /
𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} |
| 146 | 1, 145 | wceq 1540 |
1
wff mMdl =
{𝑡 ∈ mFS ∣
[(mUV‘𝑡) /
𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} |