Detailed syntax breakdown of Definition df-mdl
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmdl 35553 | 
. 2
class
mMdl | 
| 2 |   | vu | 
. . . . . . . . . . . 12
setvar 𝑢 | 
| 3 | 2 | cv 1538 | 
. . . . . . . . . . 11
class 𝑢 | 
| 4 |   | vt | 
. . . . . . . . . . . . . 14
setvar 𝑡 | 
| 5 | 4 | cv 1538 | 
. . . . . . . . . . . . 13
class 𝑡 | 
| 6 |   | cmtc 35406 | 
. . . . . . . . . . . . 13
class
mTC | 
| 7 | 5, 6 | cfv 6542 | 
. . . . . . . . . . . 12
class
(mTC‘𝑡) | 
| 8 |   | cvv 3464 | 
. . . . . . . . . . . 12
class
V | 
| 9 | 7, 8 | cxp 5665 | 
. . . . . . . . . . 11
class
((mTC‘𝑡)
× V) | 
| 10 | 3, 9 | wss 3933 | 
. . . . . . . . . 10
wff 𝑢 ⊆ ((mTC‘𝑡) × V) | 
| 11 |   | vf | 
. . . . . . . . . . . 12
setvar 𝑓 | 
| 12 | 11 | cv 1538 | 
. . . . . . . . . . 11
class 𝑓 | 
| 13 |   | cmfr 35551 | 
. . . . . . . . . . . 12
class
mFRel | 
| 14 | 5, 13 | cfv 6542 | 
. . . . . . . . . . 11
class
(mFRel‘𝑡) | 
| 15 | 12, 14 | wcel 2107 | 
. . . . . . . . . 10
wff 𝑓 ∈ (mFRel‘𝑡) | 
| 16 |   | vn | 
. . . . . . . . . . . 12
setvar 𝑛 | 
| 17 | 16 | cv 1538 | 
. . . . . . . . . . 11
class 𝑛 | 
| 18 |   | vv | 
. . . . . . . . . . . . . 14
setvar 𝑣 | 
| 19 | 18 | cv 1538 | 
. . . . . . . . . . . . 13
class 𝑣 | 
| 20 |   | cmex 35409 | 
. . . . . . . . . . . . . 14
class
mEx | 
| 21 | 5, 20 | cfv 6542 | 
. . . . . . . . . . . . 13
class
(mEx‘𝑡) | 
| 22 | 19, 21 | cxp 5665 | 
. . . . . . . . . . . 12
class (𝑣 × (mEx‘𝑡)) | 
| 23 |   | cpm 8850 | 
. . . . . . . . . . . 12
class 
↑pm | 
| 24 | 3, 22, 23 | co 7414 | 
. . . . . . . . . . 11
class (𝑢 ↑pm (𝑣 × (mEx‘𝑡))) | 
| 25 | 17, 24 | wcel 2107 | 
. . . . . . . . . 10
wff 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡))) | 
| 26 | 10, 15, 25 | w3a 1086 | 
. . . . . . . . 9
wff (𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) | 
| 27 |   | vm | 
. . . . . . . . . . . . . . . . . 18
setvar 𝑚 | 
| 28 | 27 | cv 1538 | 
. . . . . . . . . . . . . . . . 17
class 𝑚 | 
| 29 |   | ve | 
. . . . . . . . . . . . . . . . . 18
setvar 𝑒 | 
| 30 | 29 | cv 1538 | 
. . . . . . . . . . . . . . . . 17
class 𝑒 | 
| 31 | 28, 30 | cop 4614 | 
. . . . . . . . . . . . . . . 16
class
〈𝑚, 𝑒〉 | 
| 32 | 31 | csn 4608 | 
. . . . . . . . . . . . . . 15
class
{〈𝑚, 𝑒〉} | 
| 33 | 17, 32 | cima 5670 | 
. . . . . . . . . . . . . 14
class (𝑛 “ {〈𝑚, 𝑒〉}) | 
| 34 |   | c1st 7995 | 
. . . . . . . . . . . . . . . . 17
class
1st | 
| 35 | 30, 34 | cfv 6542 | 
. . . . . . . . . . . . . . . 16
class
(1st ‘𝑒) | 
| 36 | 35 | csn 4608 | 
. . . . . . . . . . . . . . 15
class
{(1st ‘𝑒)} | 
| 37 | 3, 36 | cima 5670 | 
. . . . . . . . . . . . . 14
class (𝑢 “ {(1st
‘𝑒)}) | 
| 38 | 33, 37 | wss 3933 | 
. . . . . . . . . . . . 13
wff (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) | 
| 39 |   | vx | 
. . . . . . . . . . . . . 14
setvar 𝑥 | 
| 40 | 39 | cv 1538 | 
. . . . . . . . . . . . 13
class 𝑥 | 
| 41 | 38, 29, 40 | wral 3050 | 
. . . . . . . . . . . 12
wff
∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) | 
| 42 |   | vy | 
. . . . . . . . . . . . . . . . 17
setvar 𝑦 | 
| 43 | 42 | cv 1538 | 
. . . . . . . . . . . . . . . 16
class 𝑦 | 
| 44 |   | cmvh 35414 | 
. . . . . . . . . . . . . . . . 17
class
mVH | 
| 45 | 5, 44 | cfv 6542 | 
. . . . . . . . . . . . . . . 16
class
(mVH‘𝑡) | 
| 46 | 43, 45 | cfv 6542 | 
. . . . . . . . . . . . . . 15
class
((mVH‘𝑡)‘𝑦) | 
| 47 | 28, 46 | cop 4614 | 
. . . . . . . . . . . . . 14
class
〈𝑚,
((mVH‘𝑡)‘𝑦)〉 | 
| 48 | 43, 28 | cfv 6542 | 
. . . . . . . . . . . . . 14
class (𝑚‘𝑦) | 
| 49 | 47, 48, 17 | wbr 5125 | 
. . . . . . . . . . . . 13
wff 〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) | 
| 50 |   | cmvar 35403 | 
. . . . . . . . . . . . . 14
class
mVR | 
| 51 | 5, 50 | cfv 6542 | 
. . . . . . . . . . . . 13
class
(mVR‘𝑡) | 
| 52 | 49, 42, 51 | wral 3050 | 
. . . . . . . . . . . 12
wff
∀𝑦 ∈
(mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) | 
| 53 |   | vd | 
. . . . . . . . . . . . . . . . . . 19
setvar 𝑑 | 
| 54 | 53 | cv 1538 | 
. . . . . . . . . . . . . . . . . 18
class 𝑑 | 
| 55 |   | vh | 
. . . . . . . . . . . . . . . . . . 19
setvar ℎ | 
| 56 | 55 | cv 1538 | 
. . . . . . . . . . . . . . . . . 18
class ℎ | 
| 57 |   | va | 
. . . . . . . . . . . . . . . . . . 19
setvar 𝑎 | 
| 58 | 57 | cv 1538 | 
. . . . . . . . . . . . . . . . . 18
class 𝑎 | 
| 59 | 54, 56, 58 | cotp 4616 | 
. . . . . . . . . . . . . . . . 17
class
〈𝑑, ℎ, 𝑎〉 | 
| 60 |   | cmax 35407 | 
. . . . . . . . . . . . . . . . . 18
class
mAx | 
| 61 | 5, 60 | cfv 6542 | 
. . . . . . . . . . . . . . . . 17
class
(mAx‘𝑡) | 
| 62 | 59, 61 | wcel 2107 | 
. . . . . . . . . . . . . . . 16
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) | 
| 63 |   | vz | 
. . . . . . . . . . . . . . . . . . . . . . 23
setvar 𝑧 | 
| 64 | 63 | cv 1538 | 
. . . . . . . . . . . . . . . . . . . . . 22
class 𝑧 | 
| 65 | 43, 64, 54 | wbr 5125 | 
. . . . . . . . . . . . . . . . . . . . 21
wff 𝑦𝑑𝑧 | 
| 66 | 64, 28 | cfv 6542 | 
. . . . . . . . . . . . . . . . . . . . . 22
class (𝑚‘𝑧) | 
| 67 | 48, 66, 12 | wbr 5125 | 
. . . . . . . . . . . . . . . . . . . . 21
wff (𝑚‘𝑦)𝑓(𝑚‘𝑧) | 
| 68 | 65, 67 | wi 4 | 
. . . . . . . . . . . . . . . . . . . 20
wff (𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) | 
| 69 | 68, 63 | wal 1537 | 
. . . . . . . . . . . . . . . . . . 19
wff
∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) | 
| 70 | 69, 42 | wal 1537 | 
. . . . . . . . . . . . . . . . . 18
wff
∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) | 
| 71 | 17 | cdm 5667 | 
. . . . . . . . . . . . . . . . . . . 20
class dom 𝑛 | 
| 72 | 28 | csn 4608 | 
. . . . . . . . . . . . . . . . . . . 20
class {𝑚} | 
| 73 | 71, 72 | cima 5670 | 
. . . . . . . . . . . . . . . . . . 19
class (dom
𝑛 “ {𝑚}) | 
| 74 | 56, 73 | wss 3933 | 
. . . . . . . . . . . . . . . . . 18
wff ℎ ⊆ (dom 𝑛 “ {𝑚}) | 
| 75 | 70, 74 | wa 395 | 
. . . . . . . . . . . . . . . . 17
wff
(∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) | 
| 76 | 28, 58, 71 | wbr 5125 | 
. . . . . . . . . . . . . . . . 17
wff 𝑚dom 𝑛 𝑎 | 
| 77 | 75, 76 | wi 4 | 
. . . . . . . . . . . . . . . 16
wff
((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎) | 
| 78 | 62, 77 | wi 4 | 
. . . . . . . . . . . . . . 15
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) | 
| 79 | 78, 57 | wal 1537 | 
. . . . . . . . . . . . . 14
wff
∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) | 
| 80 | 79, 55 | wal 1537 | 
. . . . . . . . . . . . 13
wff
∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) | 
| 81 | 80, 53 | wal 1537 | 
. . . . . . . . . . . 12
wff
∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎)) | 
| 82 | 41, 52, 81 | w3a 1086 | 
. . . . . . . . . . 11
wff
(∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) | 
| 83 |   | vs | 
. . . . . . . . . . . . . . . . . . 19
setvar 𝑠 | 
| 84 | 83 | cv 1538 | 
. . . . . . . . . . . . . . . . . 18
class 𝑠 | 
| 85 | 84, 28 | cop 4614 | 
. . . . . . . . . . . . . . . . 17
class
〈𝑠, 𝑚〉 | 
| 86 |   | cmvsb 35549 | 
. . . . . . . . . . . . . . . . . 18
class
mVSubst | 
| 87 | 5, 86 | cfv 6542 | 
. . . . . . . . . . . . . . . . 17
class
(mVSubst‘𝑡) | 
| 88 | 85, 43, 87 | wbr 5125 | 
. . . . . . . . . . . . . . . 16
wff 〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 | 
| 89 | 30, 84 | cfv 6542 | 
. . . . . . . . . . . . . . . . . . . 20
class (𝑠‘𝑒) | 
| 90 | 28, 89 | cop 4614 | 
. . . . . . . . . . . . . . . . . . 19
class
〈𝑚, (𝑠‘𝑒)〉 | 
| 91 | 90 | csn 4608 | 
. . . . . . . . . . . . . . . . . 18
class
{〈𝑚, (𝑠‘𝑒)〉} | 
| 92 | 17, 91 | cima 5670 | 
. . . . . . . . . . . . . . . . 17
class (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) | 
| 93 | 43, 30 | cop 4614 | 
. . . . . . . . . . . . . . . . . . 19
class
〈𝑦, 𝑒〉 | 
| 94 | 93 | csn 4608 | 
. . . . . . . . . . . . . . . . . 18
class
{〈𝑦, 𝑒〉} | 
| 95 | 17, 94 | cima 5670 | 
. . . . . . . . . . . . . . . . 17
class (𝑛 “ {〈𝑦, 𝑒〉}) | 
| 96 | 92, 95 | wceq 1539 | 
. . . . . . . . . . . . . . . 16
wff (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉}) | 
| 97 | 88, 96 | wi 4 | 
. . . . . . . . . . . . . . 15
wff
(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) | 
| 98 | 97, 42 | wal 1537 | 
. . . . . . . . . . . . . 14
wff
∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) | 
| 99 | 98, 29, 21 | wral 3050 | 
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
(mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) | 
| 100 |   | cmsub 35413 | 
. . . . . . . . . . . . . . 15
class
mSubst | 
| 101 | 5, 100 | cfv 6542 | 
. . . . . . . . . . . . . 14
class
(mSubst‘𝑡) | 
| 102 | 101 | crn 5668 | 
. . . . . . . . . . . . 13
class ran
(mSubst‘𝑡) | 
| 103 | 99, 83, 102 | wral 3050 | 
. . . . . . . . . . . 12
wff
∀𝑠 ∈ ran
(mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) | 
| 104 |   | cmvrs 35411 | 
. . . . . . . . . . . . . . . . . . 19
class
mVars | 
| 105 | 5, 104 | cfv 6542 | 
. . . . . . . . . . . . . . . . . 18
class
(mVars‘𝑡) | 
| 106 | 30, 105 | cfv 6542 | 
. . . . . . . . . . . . . . . . 17
class
((mVars‘𝑡)‘𝑒) | 
| 107 | 28, 106 | cres 5669 | 
. . . . . . . . . . . . . . . 16
class (𝑚 ↾ ((mVars‘𝑡)‘𝑒)) | 
| 108 |   | vp | 
. . . . . . . . . . . . . . . . . 18
setvar 𝑝 | 
| 109 | 108 | cv 1538 | 
. . . . . . . . . . . . . . . . 17
class 𝑝 | 
| 110 | 109, 106 | cres 5669 | 
. . . . . . . . . . . . . . . 16
class (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) | 
| 111 | 107, 110 | wceq 1539 | 
. . . . . . . . . . . . . . 15
wff (𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) | 
| 112 | 109, 30 | cop 4614 | 
. . . . . . . . . . . . . . . . . 18
class
〈𝑝, 𝑒〉 | 
| 113 | 112 | csn 4608 | 
. . . . . . . . . . . . . . . . 17
class
{〈𝑝, 𝑒〉} | 
| 114 | 17, 113 | cima 5670 | 
. . . . . . . . . . . . . . . 16
class (𝑛 “ {〈𝑝, 𝑒〉}) | 
| 115 | 33, 114 | wceq 1539 | 
. . . . . . . . . . . . . . 15
wff (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉}) | 
| 116 | 111, 115 | wi 4 | 
. . . . . . . . . . . . . 14
wff ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) | 
| 117 | 116, 29, 40 | wral 3050 | 
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) | 
| 118 | 117, 108,
19 | wral 3050 | 
. . . . . . . . . . . 12
wff
∀𝑝 ∈
𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) | 
| 119 | 28, 106 | cima 5670 | 
. . . . . . . . . . . . . . . 16
class (𝑚 “ ((mVars‘𝑡)‘𝑒)) | 
| 120 | 43 | csn 4608 | 
. . . . . . . . . . . . . . . . 17
class {𝑦} | 
| 121 | 12, 120 | cima 5670 | 
. . . . . . . . . . . . . . . 16
class (𝑓 “ {𝑦}) | 
| 122 | 119, 121 | wss 3933 | 
. . . . . . . . . . . . . . 15
wff (𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) | 
| 123 | 33, 121 | wss 3933 | 
. . . . . . . . . . . . . . 15
wff (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}) | 
| 124 | 122, 123 | wi 4 | 
. . . . . . . . . . . . . 14
wff ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) | 
| 125 | 124, 29, 40 | wral 3050 | 
. . . . . . . . . . . . 13
wff
∀𝑒 ∈
𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) | 
| 126 | 125, 42, 3 | wral 3050 | 
. . . . . . . . . . . 12
wff
∀𝑦 ∈
𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})) | 
| 127 | 103, 118,
126 | w3a 1086 | 
. . . . . . . . . . 11
wff
(∀𝑠 ∈
ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))) | 
| 128 | 82, 127 | wa 395 | 
. . . . . . . . . 10
wff
((∀𝑒 ∈
𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))) | 
| 129 | 128, 27, 19 | wral 3050 | 
. . . . . . . . 9
wff
∀𝑚 ∈
𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))) | 
| 130 | 26, 129 | wa 395 | 
. . . . . . . 8
wff ((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 131 |   | cmfsh 35550 | 
. . . . . . . . 9
class
mFresh | 
| 132 | 5, 131 | cfv 6542 | 
. . . . . . . 8
class
(mFresh‘𝑡) | 
| 133 | 130, 11, 132 | wsbc 3772 | 
. . . . . . 7
wff
[(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 134 |   | cmevl 35552 | 
. . . . . . . 8
class
mEval | 
| 135 | 5, 134 | cfv 6542 | 
. . . . . . 7
class
(mEval‘𝑡) | 
| 136 | 133, 16, 135 | wsbc 3772 | 
. . . . . 6
wff
[(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 137 |   | cmvl 35548 | 
. . . . . . 7
class
mVL | 
| 138 | 5, 137 | cfv 6542 | 
. . . . . 6
class
(mVL‘𝑡) | 
| 139 | 136, 18, 138 | wsbc 3772 | 
. . . . 5
wff
[(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 140 | 139, 39, 21 | wsbc 3772 | 
. . . 4
wff
[(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 141 |   | cmuv 35547 | 
. . . . 5
class
mUV | 
| 142 | 5, 141 | cfv 6542 | 
. . . 4
class
(mUV‘𝑡) | 
| 143 | 140, 2, 142 | wsbc 3772 | 
. . 3
wff
[(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦}))))) | 
| 144 |   | cmfs 35418 | 
. . 3
class
mFS | 
| 145 | 143, 4, 144 | crab 3420 | 
. 2
class {𝑡 ∈ mFS ∣
[(mUV‘𝑡) /
𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} | 
| 146 | 1, 145 | wceq 1539 | 
1
wff mMdl =
{𝑡 ∈ mFS ∣
[(mUV‘𝑡) /
𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} |