Detailed syntax breakdown of Definition df-mwgfs
Step | Hyp | Ref
| Expression |
1 | | cmwgfs 33549 |
. 2
class
mWGFS |
2 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
3 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑑 |
4 | | vh |
. . . . . . . . . . 11
setvar ℎ |
5 | 4 | cv 1538 |
. . . . . . . . . 10
class ℎ |
6 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
7 | 6 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
8 | 3, 5, 7 | cotp 4569 |
. . . . . . . . 9
class
〈𝑑, ℎ, 𝑎〉 |
9 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
10 | 9 | cv 1538 |
. . . . . . . . . 10
class 𝑡 |
11 | | cmax 33427 |
. . . . . . . . . 10
class
mAx |
12 | 10, 11 | cfv 6433 |
. . . . . . . . 9
class
(mAx‘𝑡) |
13 | 8, 12 | wcel 2106 |
. . . . . . . 8
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) |
14 | | c1st 7829 |
. . . . . . . . . 10
class
1st |
15 | 7, 14 | cfv 6433 |
. . . . . . . . 9
class
(1st ‘𝑎) |
16 | | cmvt 33425 |
. . . . . . . . . 10
class
mVT |
17 | 10, 16 | cfv 6433 |
. . . . . . . . 9
class
(mVT‘𝑡) |
18 | 15, 17 | wcel 2106 |
. . . . . . . 8
wff
(1st ‘𝑎) ∈ (mVT‘𝑡) |
19 | 13, 18 | wa 396 |
. . . . . . 7
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) |
20 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
21 | 20 | cv 1538 |
. . . . . . . . . 10
class 𝑠 |
22 | | cmsa 33548 |
. . . . . . . . . . 11
class
mSA |
23 | 10, 22 | cfv 6433 |
. . . . . . . . . 10
class
(mSA‘𝑡) |
24 | 21, 23 | cima 5592 |
. . . . . . . . 9
class (𝑠 “ (mSA‘𝑡)) |
25 | 7, 24 | wcel 2106 |
. . . . . . . 8
wff 𝑎 ∈ (𝑠 “ (mSA‘𝑡)) |
26 | | cmsub 33433 |
. . . . . . . . . 10
class
mSubst |
27 | 10, 26 | cfv 6433 |
. . . . . . . . 9
class
(mSubst‘𝑡) |
28 | 27 | crn 5590 |
. . . . . . . 8
class ran
(mSubst‘𝑡) |
29 | 25, 20, 28 | wrex 3065 |
. . . . . . 7
wff
∃𝑠 ∈ ran
(mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)) |
30 | 19, 29 | wi 4 |
. . . . . 6
wff
((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
31 | 30, 6 | wal 1537 |
. . . . 5
wff
∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
32 | 31, 4 | wal 1537 |
. . . 4
wff
∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
33 | 32, 2 | wal 1537 |
. . 3
wff
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
34 | | cmfs 33438 |
. . 3
class
mFS |
35 | 33, 9, 34 | crab 3068 |
. 2
class {𝑡 ∈ mFS ∣
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |
36 | 1, 35 | wceq 1539 |
1
wff mWGFS =
{𝑡 ∈ mFS ∣
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |