Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mwgfs Structured version   Visualization version   GIF version

Definition df-mwgfs 33559
Description: Define the set of weakly grammatical formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mwgfs mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))}
Distinct variable group:   𝑎,𝑑,,𝑠,𝑡

Detailed syntax breakdown of Definition df-mwgfs
StepHypRef Expression
1 cmwgfs 33549 . 2 class mWGFS
2 vd . . . . . . . . . . 11 setvar 𝑑
32cv 1538 . . . . . . . . . 10 class 𝑑
4 vh . . . . . . . . . . 11 setvar
54cv 1538 . . . . . . . . . 10 class
6 va . . . . . . . . . . 11 setvar 𝑎
76cv 1538 . . . . . . . . . 10 class 𝑎
83, 5, 7cotp 4569 . . . . . . . . 9 class 𝑑, , 𝑎
9 vt . . . . . . . . . . 11 setvar 𝑡
109cv 1538 . . . . . . . . . 10 class 𝑡
11 cmax 33427 . . . . . . . . . 10 class mAx
1210, 11cfv 6433 . . . . . . . . 9 class (mAx‘𝑡)
138, 12wcel 2106 . . . . . . . 8 wff 𝑑, , 𝑎⟩ ∈ (mAx‘𝑡)
14 c1st 7829 . . . . . . . . . 10 class 1st
157, 14cfv 6433 . . . . . . . . 9 class (1st𝑎)
16 cmvt 33425 . . . . . . . . . 10 class mVT
1710, 16cfv 6433 . . . . . . . . 9 class (mVT‘𝑡)
1815, 17wcel 2106 . . . . . . . 8 wff (1st𝑎) ∈ (mVT‘𝑡)
1913, 18wa 396 . . . . . . 7 wff (⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡))
20 vs . . . . . . . . . . 11 setvar 𝑠
2120cv 1538 . . . . . . . . . 10 class 𝑠
22 cmsa 33548 . . . . . . . . . . 11 class mSA
2310, 22cfv 6433 . . . . . . . . . 10 class (mSA‘𝑡)
2421, 23cima 5592 . . . . . . . . 9 class (𝑠 “ (mSA‘𝑡))
257, 24wcel 2106 . . . . . . . 8 wff 𝑎 ∈ (𝑠 “ (mSA‘𝑡))
26 cmsub 33433 . . . . . . . . . 10 class mSubst
2710, 26cfv 6433 . . . . . . . . 9 class (mSubst‘𝑡)
2827crn 5590 . . . . . . . 8 class ran (mSubst‘𝑡)
2925, 20, 28wrex 3065 . . . . . . 7 wff 𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))
3019, 29wi 4 . . . . . 6 wff ((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))
3130, 6wal 1537 . . . . 5 wff 𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))
3231, 4wal 1537 . . . 4 wff 𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))
3332, 2wal 1537 . . 3 wff 𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))
34 cmfs 33438 . . 3 class mFS
3533, 9, 34crab 3068 . 2 class {𝑡 ∈ mFS ∣ ∀𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))}
361, 35wceq 1539 1 wff mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator