Detailed syntax breakdown of Definition df-mwgfs
| Step | Hyp | Ref
| Expression |
| 1 | | cmwgfs 35555 |
. 2
class
mWGFS |
| 2 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑑 |
| 4 | | vh |
. . . . . . . . . . 11
setvar ℎ |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class ℎ |
| 6 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 8 | 3, 5, 7 | cotp 4609 |
. . . . . . . . 9
class
〈𝑑, ℎ, 𝑎〉 |
| 9 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
| 10 | 9 | cv 1539 |
. . . . . . . . . 10
class 𝑡 |
| 11 | | cmax 35433 |
. . . . . . . . . 10
class
mAx |
| 12 | 10, 11 | cfv 6530 |
. . . . . . . . 9
class
(mAx‘𝑡) |
| 13 | 8, 12 | wcel 2108 |
. . . . . . . 8
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) |
| 14 | | c1st 7984 |
. . . . . . . . . 10
class
1st |
| 15 | 7, 14 | cfv 6530 |
. . . . . . . . 9
class
(1st ‘𝑎) |
| 16 | | cmvt 35431 |
. . . . . . . . . 10
class
mVT |
| 17 | 10, 16 | cfv 6530 |
. . . . . . . . 9
class
(mVT‘𝑡) |
| 18 | 15, 17 | wcel 2108 |
. . . . . . . 8
wff
(1st ‘𝑎) ∈ (mVT‘𝑡) |
| 19 | 13, 18 | wa 395 |
. . . . . . 7
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) |
| 20 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
| 21 | 20 | cv 1539 |
. . . . . . . . . 10
class 𝑠 |
| 22 | | cmsa 35554 |
. . . . . . . . . . 11
class
mSA |
| 23 | 10, 22 | cfv 6530 |
. . . . . . . . . 10
class
(mSA‘𝑡) |
| 24 | 21, 23 | cima 5657 |
. . . . . . . . 9
class (𝑠 “ (mSA‘𝑡)) |
| 25 | 7, 24 | wcel 2108 |
. . . . . . . 8
wff 𝑎 ∈ (𝑠 “ (mSA‘𝑡)) |
| 26 | | cmsub 35439 |
. . . . . . . . . 10
class
mSubst |
| 27 | 10, 26 | cfv 6530 |
. . . . . . . . 9
class
(mSubst‘𝑡) |
| 28 | 27 | crn 5655 |
. . . . . . . 8
class ran
(mSubst‘𝑡) |
| 29 | 25, 20, 28 | wrex 3060 |
. . . . . . 7
wff
∃𝑠 ∈ ran
(mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)) |
| 30 | 19, 29 | wi 4 |
. . . . . 6
wff
((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
| 31 | 30, 6 | wal 1538 |
. . . . 5
wff
∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
| 32 | 31, 4 | wal 1538 |
. . . 4
wff
∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
| 33 | 32, 2 | wal 1538 |
. . 3
wff
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡))) |
| 34 | | cmfs 35444 |
. . 3
class
mFS |
| 35 | 33, 9, 34 | crab 3415 |
. 2
class {𝑡 ∈ mFS ∣
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |
| 36 | 1, 35 | wceq 1540 |
1
wff mWGFS =
{𝑡 ∈ mFS ∣
∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |