Detailed syntax breakdown of Definition df-msa
| Step | Hyp | Ref
| Expression |
| 1 | | cmsa 35554 |
. 2
class
mSA |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3459 |
. . 3
class
V |
| 4 | | va |
. . . . . . . 8
setvar 𝑎 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 6 | | cm0s 35553 |
. . . . . . 7
class
m0St |
| 7 | 5, 6 | cfv 6530 |
. . . . . 6
class
(m0St‘𝑎) |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 9 | | cmax 35433 |
. . . . . . 7
class
mAx |
| 10 | 8, 9 | cfv 6530 |
. . . . . 6
class
(mAx‘𝑡) |
| 11 | 7, 10 | wcel 2108 |
. . . . 5
wff
(m0St‘𝑎)
∈ (mAx‘𝑡) |
| 12 | | c1st 7984 |
. . . . . . 7
class
1st |
| 13 | 5, 12 | cfv 6530 |
. . . . . 6
class
(1st ‘𝑎) |
| 14 | | cmvt 35431 |
. . . . . . 7
class
mVT |
| 15 | 8, 14 | cfv 6530 |
. . . . . 6
class
(mVT‘𝑡) |
| 16 | 13, 15 | wcel 2108 |
. . . . 5
wff
(1st ‘𝑎) ∈ (mVT‘𝑡) |
| 17 | | c2nd 7985 |
. . . . . . . . 9
class
2nd |
| 18 | 5, 17 | cfv 6530 |
. . . . . . . 8
class
(2nd ‘𝑎) |
| 19 | 18 | ccnv 5653 |
. . . . . . 7
class ◡(2nd ‘𝑎) |
| 20 | | cmvar 35429 |
. . . . . . . 8
class
mVR |
| 21 | 8, 20 | cfv 6530 |
. . . . . . 7
class
(mVR‘𝑡) |
| 22 | 19, 21 | cres 5656 |
. . . . . 6
class (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)) |
| 23 | 22 | wfun 6524 |
. . . . 5
wff Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)) |
| 24 | 11, 16, 23 | w3a 1086 |
. . . 4
wff
((m0St‘𝑎)
∈ (mAx‘𝑡) ∧
(1st ‘𝑎)
∈ (mVT‘𝑡) ∧
Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡))) |
| 25 | | cmex 35435 |
. . . . 5
class
mEx |
| 26 | 8, 25 | cfv 6530 |
. . . 4
class
(mEx‘𝑡) |
| 27 | 24, 4, 26 | crab 3415 |
. . 3
class {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st
‘𝑎) ∈
(mVT‘𝑡) ∧ Fun
(◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))} |
| 28 | 2, 3, 27 | cmpt 5201 |
. 2
class (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st
‘𝑎) ∈
(mVT‘𝑡) ∧ Fun
(◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) |
| 29 | 1, 28 | wceq 1540 |
1
wff mSA =
(𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st
‘𝑎) ∈
(mVT‘𝑡) ∧ Fun
(◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) |