Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-msa Structured version   Visualization version   GIF version

Definition df-msa 34873
Description: Define the set of syntax axioms. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-msa mSA = (𝑑 ∈ V ↦ {π‘Ž ∈ (mExβ€˜π‘‘) ∣ ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))})
Distinct variable group:   𝑑,π‘Ž

Detailed syntax breakdown of Definition df-msa
StepHypRef Expression
1 cmsa 34863 . 2 class mSA
2 vt . . 3 setvar 𝑑
3 cvv 3474 . . 3 class V
4 va . . . . . . . 8 setvar π‘Ž
54cv 1540 . . . . . . 7 class π‘Ž
6 cm0s 34862 . . . . . . 7 class m0St
75, 6cfv 6543 . . . . . 6 class (m0Stβ€˜π‘Ž)
82cv 1540 . . . . . . 7 class 𝑑
9 cmax 34742 . . . . . . 7 class mAx
108, 9cfv 6543 . . . . . 6 class (mAxβ€˜π‘‘)
117, 10wcel 2106 . . . . 5 wff (m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘)
12 c1st 7975 . . . . . . 7 class 1st
135, 12cfv 6543 . . . . . 6 class (1st β€˜π‘Ž)
14 cmvt 34740 . . . . . . 7 class mVT
158, 14cfv 6543 . . . . . 6 class (mVTβ€˜π‘‘)
1613, 15wcel 2106 . . . . 5 wff (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘)
17 c2nd 7976 . . . . . . . . 9 class 2nd
185, 17cfv 6543 . . . . . . . 8 class (2nd β€˜π‘Ž)
1918ccnv 5675 . . . . . . 7 class β—‘(2nd β€˜π‘Ž)
20 cmvar 34738 . . . . . . . 8 class mVR
218, 20cfv 6543 . . . . . . 7 class (mVRβ€˜π‘‘)
2219, 21cres 5678 . . . . . 6 class (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘))
2322wfun 6537 . . . . 5 wff Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘))
2411, 16, 23w3a 1087 . . . 4 wff ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))
25 cmex 34744 . . . . 5 class mEx
268, 25cfv 6543 . . . 4 class (mExβ€˜π‘‘)
2724, 4, 26crab 3432 . . 3 class {π‘Ž ∈ (mExβ€˜π‘‘) ∣ ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))}
282, 3, 27cmpt 5231 . 2 class (𝑑 ∈ V ↦ {π‘Ž ∈ (mExβ€˜π‘‘) ∣ ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))})
291, 28wceq 1541 1 wff mSA = (𝑑 ∈ V ↦ {π‘Ž ∈ (mExβ€˜π‘‘) ∣ ((m0Stβ€˜π‘Ž) ∈ (mAxβ€˜π‘‘) ∧ (1st β€˜π‘Ž) ∈ (mVTβ€˜π‘‘) ∧ Fun (β—‘(2nd β€˜π‘Ž) β†Ύ (mVRβ€˜π‘‘)))})
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator