Step | Hyp | Ref
| Expression |
1 | | cmsa 34863 |
. 2
class
mSA |
2 | | vt |
. . 3
setvar π‘ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | va |
. . . . . . . 8
setvar π |
5 | 4 | cv 1540 |
. . . . . . 7
class π |
6 | | cm0s 34862 |
. . . . . . 7
class
m0St |
7 | 5, 6 | cfv 6543 |
. . . . . 6
class
(m0Stβπ) |
8 | 2 | cv 1540 |
. . . . . . 7
class π‘ |
9 | | cmax 34742 |
. . . . . . 7
class
mAx |
10 | 8, 9 | cfv 6543 |
. . . . . 6
class
(mAxβπ‘) |
11 | 7, 10 | wcel 2106 |
. . . . 5
wff
(m0Stβπ)
β (mAxβπ‘) |
12 | | c1st 7975 |
. . . . . . 7
class
1st |
13 | 5, 12 | cfv 6543 |
. . . . . 6
class
(1st βπ) |
14 | | cmvt 34740 |
. . . . . . 7
class
mVT |
15 | 8, 14 | cfv 6543 |
. . . . . 6
class
(mVTβπ‘) |
16 | 13, 15 | wcel 2106 |
. . . . 5
wff
(1st βπ) β (mVTβπ‘) |
17 | | c2nd 7976 |
. . . . . . . . 9
class
2nd |
18 | 5, 17 | cfv 6543 |
. . . . . . . 8
class
(2nd βπ) |
19 | 18 | ccnv 5675 |
. . . . . . 7
class β‘(2nd βπ) |
20 | | cmvar 34738 |
. . . . . . . 8
class
mVR |
21 | 8, 20 | cfv 6543 |
. . . . . . 7
class
(mVRβπ‘) |
22 | 19, 21 | cres 5678 |
. . . . . 6
class (β‘(2nd βπ) βΎ (mVRβπ‘)) |
23 | 22 | wfun 6537 |
. . . . 5
wff Fun (β‘(2nd βπ) βΎ (mVRβπ‘)) |
24 | 11, 16, 23 | w3a 1087 |
. . . 4
wff
((m0Stβπ)
β (mAxβπ‘) β§
(1st βπ)
β (mVTβπ‘) β§
Fun (β‘(2nd βπ) βΎ (mVRβπ‘))) |
25 | | cmex 34744 |
. . . . 5
class
mEx |
26 | 8, 25 | cfv 6543 |
. . . 4
class
(mExβπ‘) |
27 | 24, 4, 26 | crab 3432 |
. . 3
class {π β (mExβπ‘) β£ ((m0Stβπ) β (mAxβπ‘) β§ (1st
βπ) β
(mVTβπ‘) β§ Fun
(β‘(2nd βπ) βΎ (mVRβπ‘)))} |
28 | 2, 3, 27 | cmpt 5231 |
. 2
class (π‘ β V β¦ {π β (mExβπ‘) β£ ((m0Stβπ) β (mAxβπ‘) β§ (1st
βπ) β
(mVTβπ‘) β§ Fun
(β‘(2nd βπ) βΎ (mVRβπ‘)))}) |
29 | 1, 28 | wceq 1541 |
1
wff mSA =
(π‘ β V β¦ {π β (mExβπ‘) β£ ((m0Stβπ) β (mAxβπ‘) β§ (1st
βπ) β
(mVTβπ‘) β§ Fun
(β‘(2nd βπ) βΎ (mVRβπ‘)))}) |