Detailed syntax breakdown of Definition df-negs
| Step | Hyp | Ref
| Expression |
| 1 | | cnegs 27982 |
. 2
class
-us |
| 2 | | vx |
. . . 4
setvar 𝑥 |
| 3 | | vn |
. . . 4
setvar 𝑛 |
| 4 | | cvv 3464 |
. . . 4
class
V |
| 5 | 3 | cv 1539 |
. . . . . 6
class 𝑛 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 7 | | cright 27811 |
. . . . . . 7
class
R |
| 8 | 6, 7 | cfv 6536 |
. . . . . 6
class ( R
‘𝑥) |
| 9 | 5, 8 | cima 5662 |
. . . . 5
class (𝑛 “ ( R ‘𝑥)) |
| 10 | | cleft 27810 |
. . . . . . 7
class
L |
| 11 | 6, 10 | cfv 6536 |
. . . . . 6
class ( L
‘𝑥) |
| 12 | 5, 11 | cima 5662 |
. . . . 5
class (𝑛 “ ( L ‘𝑥)) |
| 13 | | cscut 27751 |
. . . . 5
class
|s |
| 14 | 9, 12, 13 | co 7410 |
. . . 4
class ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) |
| 15 | 2, 3, 4, 4, 14 | cmpo 7412 |
. . 3
class (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) |
| 16 | 15 | cnorec 27901 |
. 2
class norec
((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |
| 17 | 1, 16 | wceq 1540 |
1
wff
-us = norec ((𝑥
∈ V, 𝑛 ∈ V
↦ ((𝑛 “ ( R
‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |