Detailed syntax breakdown of Definition df-negs
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnegs 28052 | . 2
class 
-us | 
| 2 |  | vx | . . . 4
setvar 𝑥 | 
| 3 |  | vn | . . . 4
setvar 𝑛 | 
| 4 |  | cvv 3479 | . . . 4
class
V | 
| 5 | 3 | cv 1538 | . . . . . 6
class 𝑛 | 
| 6 | 2 | cv 1538 | . . . . . . 7
class 𝑥 | 
| 7 |  | cright 27886 | . . . . . . 7
class 
R | 
| 8 | 6, 7 | cfv 6560 | . . . . . 6
class ( R
‘𝑥) | 
| 9 | 5, 8 | cima 5687 | . . . . 5
class (𝑛 “ ( R ‘𝑥)) | 
| 10 |  | cleft 27885 | . . . . . . 7
class 
L | 
| 11 | 6, 10 | cfv 6560 | . . . . . 6
class ( L
‘𝑥) | 
| 12 | 5, 11 | cima 5687 | . . . . 5
class (𝑛 “ ( L ‘𝑥)) | 
| 13 |  | cscut 27828 | . . . . 5
class 
|s | 
| 14 | 9, 12, 13 | co 7432 | . . . 4
class ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) | 
| 15 | 2, 3, 4, 4, 14 | cmpo 7434 | . . 3
class (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) | 
| 16 | 15 | cnorec 27971 | . 2
class  norec
((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | 
| 17 | 1, 16 | wceq 1539 | 1
wff 
-us = norec ((𝑥
∈ V, 𝑛 ∈ V
↦ ((𝑛 “ ( R
‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |