MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-negs Structured version   Visualization version   GIF version

Definition df-negs 27485
Description: Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
df-negs -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
Distinct variable group:   𝑥,𝑛

Detailed syntax breakdown of Definition df-negs
StepHypRef Expression
1 cnegs 27483 . 2 class -us
2 vx . . . 4 setvar 𝑥
3 vn . . . 4 setvar 𝑛
4 cvv 3474 . . . 4 class V
53cv 1540 . . . . . 6 class 𝑛
62cv 1540 . . . . . . 7 class 𝑥
7 cright 27330 . . . . . . 7 class R
86, 7cfv 6540 . . . . . 6 class ( R ‘𝑥)
95, 8cima 5678 . . . . 5 class (𝑛 “ ( R ‘𝑥))
10 cleft 27329 . . . . . . 7 class L
116, 10cfv 6540 . . . . . 6 class ( L ‘𝑥)
125, 11cima 5678 . . . . 5 class (𝑛 “ ( L ‘𝑥))
13 cscut 27273 . . . . 5 class |s
149, 12, 13co 7405 . . . 4 class ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))
152, 3, 4, 4, 14cmpo 7407 . . 3 class (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))
1615cnorec 27410 . 2 class norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
171, 16wceq 1541 1 wff -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
Colors of variables: wff setvar class
This definition is referenced by:  negsfn  27487  negsval  27489
  Copyright terms: Public domain W3C validator