Step | Hyp | Ref
| Expression |
1 | | df-negs 34099 |
. . 3
⊢ -us =
norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |
2 | 1 | norecov 34083 |
. 2
⊢ (𝐴 ∈
No → ( -us ‘𝐴) = (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))))) |
3 | | elex 3448 |
. . 3
⊢ (𝐴 ∈
No → 𝐴 ∈
V) |
4 | | negsfn 34101 |
. . . . . 6
⊢ -us Fn
No |
5 | | fnfun 6529 |
. . . . . 6
⊢ ( -us Fn
No → Fun -us ) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun
-us |
7 | | fvex 6781 |
. . . . . 6
⊢ ( L
‘𝐴) ∈
V |
8 | | fvex 6781 |
. . . . . 6
⊢ ( R
‘𝐴) ∈
V |
9 | 7, 8 | unex 7587 |
. . . . 5
⊢ (( L
‘𝐴) ∪ ( R
‘𝐴)) ∈
V |
10 | | resfunexg 7085 |
. . . . 5
⊢ ((Fun -us
∧ (( L ‘𝐴) ∪
( R ‘𝐴)) ∈ V)
→ ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V) |
11 | 6, 9, 10 | mp2an 688 |
. . . 4
⊢ ( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
∈ V |
12 | 11 | a1i 11 |
. . 3
⊢ (𝐴 ∈
No → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V) |
13 | | ovexd 7303 |
. . 3
⊢ (𝐴 ∈
No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V) |
14 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴)) |
15 | 14 | imaeq2d 5966 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑛 “ ( R ‘𝑥)) = (𝑛 “ ( R ‘𝐴))) |
16 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ( L ‘𝑥) = ( L ‘𝐴)) |
17 | 16 | imaeq2d 5966 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑛 “ ( L ‘𝑥)) = (𝑛 “ ( L ‘𝐴))) |
18 | 15, 17 | oveq12d 7286 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) = ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴)))) |
19 | | imaeq1 5961 |
. . . . 5
⊢ (𝑛 = ( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) → (𝑛 “ ( R ‘𝐴)) = (( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) “ ( R
‘𝐴))) |
20 | | imaeq1 5961 |
. . . . 5
⊢ (𝑛 = ( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) → (𝑛 “ ( L ‘𝐴)) = (( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) “ ( L
‘𝐴))) |
21 | 19, 20 | oveq12d 7286 |
. . . 4
⊢ (𝑛 = ( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) → ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) “ ( L
‘𝐴)))) |
22 | | eqid 2739 |
. . . 4
⊢ (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) = (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) |
23 | 18, 21, 22 | ovmpog 7423 |
. . 3
⊢ ((𝐴 ∈ V ∧ ( -us ↾ ((
L ‘𝐴) ∪ ( R
‘𝐴))) ∈ V ∧
((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V) → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) “ ( R
‘𝐴)) |s (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( L ‘𝐴)))) |
24 | 3, 12, 13, 23 | syl3anc 1369 |
. 2
⊢ (𝐴 ∈
No → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L
‘𝐴) ∪ ( R
‘𝐴))) “ ( R
‘𝐴)) |s (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( L ‘𝐴)))) |
25 | | ssun2 4111 |
. . . . 5
⊢ ( R
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
26 | | resima2 5923 |
. . . . 5
⊢ (( R
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) → (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( R ‘𝐴)) = (
-us “ ( R ‘𝐴))) |
27 | 25, 26 | ax-mp 5 |
. . . 4
⊢ (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( R ‘𝐴)) = (
-us “ ( R ‘𝐴)) |
28 | | ssun1 4110 |
. . . . 5
⊢ ( L
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) |
29 | | resima2 5923 |
. . . . 5
⊢ (( L
‘𝐴) ⊆ (( L
‘𝐴) ∪ ( R
‘𝐴)) → (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( L ‘𝐴)) = (
-us “ ( L ‘𝐴))) |
30 | 28, 29 | ax-mp 5 |
. . . 4
⊢ (( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( L ‘𝐴)) = (
-us “ ( L ‘𝐴)) |
31 | 27, 30 | oveq12i 7280 |
. . 3
⊢ ((( -us
↾ (( L ‘𝐴)
∪ ( R ‘𝐴)))
“ ( R ‘𝐴)) |s
(( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L
‘𝐴))) |
32 | 31 | a1i 11 |
. 2
⊢ (𝐴 ∈
No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R
‘𝐴)) |s ( -us “
( L ‘𝐴)))) |
33 | 2, 24, 32 | 3eqtrd 2783 |
1
⊢ (𝐴 ∈
No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L
‘𝐴)))) |