Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  negsval Structured version   Visualization version   GIF version

Theorem negsval 34313
Description: The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negsval (𝐴 No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))

Proof of Theorem negsval
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-negs 34309 . . 3 -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
21norecov 34256 . 2 (𝐴 No → ( -us ‘𝐴) = (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
3 elex 3462 . . 3 (𝐴 No 𝐴 ∈ V)
4 negsfn 34311 . . . . . 6 -us Fn No
5 fnfun 6600 . . . . . 6 ( -us Fn No → Fun -us )
64, 5ax-mp 5 . . . . 5 Fun -us
7 fvex 6853 . . . . . 6 ( L ‘𝐴) ∈ V
8 fvex 6853 . . . . . 6 ( R ‘𝐴) ∈ V
97, 8unex 7673 . . . . 5 (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V
10 resfunexg 7162 . . . . 5 ((Fun -us ∧ (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V) → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
116, 9, 10mp2an 691 . . . 4 ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V
1211a1i 11 . . 3 (𝐴 No → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
13 ovexd 7387 . . 3 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V)
14 fveq2 6840 . . . . . 6 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
1514imaeq2d 6012 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( R ‘𝑥)) = (𝑛 “ ( R ‘𝐴)))
16 fveq2 6840 . . . . . 6 (𝑥 = 𝐴 → ( L ‘𝑥) = ( L ‘𝐴))
1716imaeq2d 6012 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( L ‘𝑥)) = (𝑛 “ ( L ‘𝐴)))
1815, 17oveq12d 7370 . . . 4 (𝑥 = 𝐴 → ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) = ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))))
19 imaeq1 6007 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( R ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)))
20 imaeq1 6007 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( L ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)))
2119, 20oveq12d 7370 . . . 4 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
22 eqid 2738 . . . 4 (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) = (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))
2318, 21, 22ovmpog 7509 . . 3 ((𝐴 ∈ V ∧ ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V ∧ ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V) → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
243, 12, 13, 23syl3anc 1372 . 2 (𝐴 No → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
25 ssun2 4132 . . . . 5 ( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
26 resima2 5971 . . . . 5 (( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴)))
2725, 26ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴))
28 ssun1 4131 . . . . 5 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
29 resima2 5971 . . . . 5 (( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴)))
3028, 29ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴))
3127, 30oveq12i 7364 . . 3 ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))
3231a1i 11 . 2 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
332, 24, 323eqtrd 2782 1 (𝐴 No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3444  cun 3907  wss 3909  cres 5634  cima 5635  Fun wfun 6488   Fn wfn 6489  cfv 6494  (class class class)co 7352  cmpo 7354   No csur 26940   |s cscut 27074   L cleft 27127   R cright 27128   -us cnegs 34307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-1o 8405  df-2o 8406  df-no 26943  df-slt 26944  df-bday 26945  df-sslt 27073  df-scut 27075  df-made 27129  df-old 27130  df-left 27132  df-right 27133  df-norec 34247  df-negs 34309
This theorem is referenced by:  negs0s  34314  negsproplem3  34317  negsid  34328
  Copyright terms: Public domain W3C validator