MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsval Structured version   Visualization version   GIF version

Theorem negsval 27968
Description: The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negsval (𝐴 No → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))

Proof of Theorem negsval
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-negs 27964 . . 3 -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
21norecov 27891 . 2 (𝐴 No → ( -us𝐴) = (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
3 elex 3457 . . 3 (𝐴 No 𝐴 ∈ V)
4 negsfn 27966 . . . . . 6 -us Fn No
5 fnfun 6581 . . . . . 6 ( -us Fn No → Fun -us )
64, 5ax-mp 5 . . . . 5 Fun -us
7 fvex 6835 . . . . . 6 ( L ‘𝐴) ∈ V
8 fvex 6835 . . . . . 6 ( R ‘𝐴) ∈ V
97, 8unex 7677 . . . . 5 (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V
10 resfunexg 7149 . . . . 5 ((Fun -us ∧ (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V) → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
116, 9, 10mp2an 692 . . . 4 ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V
1211a1i 11 . . 3 (𝐴 No → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
13 ovexd 7381 . . 3 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V)
14 fveq2 6822 . . . . . 6 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
1514imaeq2d 6009 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( R ‘𝑥)) = (𝑛 “ ( R ‘𝐴)))
16 fveq2 6822 . . . . . 6 (𝑥 = 𝐴 → ( L ‘𝑥) = ( L ‘𝐴))
1716imaeq2d 6009 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( L ‘𝑥)) = (𝑛 “ ( L ‘𝐴)))
1815, 17oveq12d 7364 . . . 4 (𝑥 = 𝐴 → ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) = ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))))
19 imaeq1 6004 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( R ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)))
20 imaeq1 6004 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( L ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)))
2119, 20oveq12d 7364 . . . 4 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
22 eqid 2731 . . . 4 (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) = (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))
2318, 21, 22ovmpog 7505 . . 3 ((𝐴 ∈ V ∧ ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V ∧ ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V) → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
243, 12, 13, 23syl3anc 1373 . 2 (𝐴 No → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
25 ssun2 4129 . . . . 5 ( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
26 resima2 5965 . . . . 5 (( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴)))
2725, 26ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴))
28 ssun1 4128 . . . . 5 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
29 resima2 5965 . . . . 5 (( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴)))
3028, 29ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴))
3127, 30oveq12i 7358 . . 3 ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))
3231a1i 11 . 2 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
332, 24, 323eqtrd 2770 1 (𝐴 No → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  wss 3902  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348   No csur 27579   |s cscut 27723   L cleft 27787   R cright 27788   -us cnegs 27962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-negs 27964
This theorem is referenced by:  negs0s  27969  negs1s  27970  negsproplem3  27973  negsid  27984  negsunif  27998  negsbdaylem  27999
  Copyright terms: Public domain W3C validator