MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsval Structured version   Visualization version   GIF version

Theorem negsval 27938
Description: The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negsval (𝐴 No → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))

Proof of Theorem negsval
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-negs 27934 . . 3 -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
21norecov 27861 . 2 (𝐴 No → ( -us𝐴) = (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))))
3 elex 3471 . . 3 (𝐴 No 𝐴 ∈ V)
4 negsfn 27936 . . . . . 6 -us Fn No
5 fnfun 6621 . . . . . 6 ( -us Fn No → Fun -us )
64, 5ax-mp 5 . . . . 5 Fun -us
7 fvex 6874 . . . . . 6 ( L ‘𝐴) ∈ V
8 fvex 6874 . . . . . 6 ( R ‘𝐴) ∈ V
97, 8unex 7723 . . . . 5 (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V
10 resfunexg 7192 . . . . 5 ((Fun -us ∧ (( L ‘𝐴) ∪ ( R ‘𝐴)) ∈ V) → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
116, 9, 10mp2an 692 . . . 4 ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V
1211a1i 11 . . 3 (𝐴 No → ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V)
13 ovexd 7425 . . 3 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V)
14 fveq2 6861 . . . . . 6 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
1514imaeq2d 6034 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( R ‘𝑥)) = (𝑛 “ ( R ‘𝐴)))
16 fveq2 6861 . . . . . 6 (𝑥 = 𝐴 → ( L ‘𝑥) = ( L ‘𝐴))
1716imaeq2d 6034 . . . . 5 (𝑥 = 𝐴 → (𝑛 “ ( L ‘𝑥)) = (𝑛 “ ( L ‘𝐴)))
1815, 17oveq12d 7408 . . . 4 (𝑥 = 𝐴 → ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))) = ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))))
19 imaeq1 6029 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( R ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)))
20 imaeq1 6029 . . . . 5 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → (𝑛 “ ( L ‘𝐴)) = (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)))
2119, 20oveq12d 7408 . . . 4 (𝑛 = ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) → ((𝑛 “ ( R ‘𝐴)) |s (𝑛 “ ( L ‘𝐴))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
22 eqid 2730 . . . 4 (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))) = (𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))
2318, 21, 22ovmpog 7551 . . 3 ((𝐴 ∈ V ∧ ( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) ∈ V ∧ ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) ∈ V) → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
243, 12, 13, 23syl3anc 1373 . 2 (𝐴 No → (𝐴(𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴)))) = ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))))
25 ssun2 4145 . . . . 5 ( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
26 resima2 5990 . . . . 5 (( R ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴)))
2725, 26ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) = ( -us “ ( R ‘𝐴))
28 ssun1 4144 . . . . 5 ( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴))
29 resima2 5990 . . . . 5 (( L ‘𝐴) ⊆ (( L ‘𝐴) ∪ ( R ‘𝐴)) → (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴)))
3028, 29ax-mp 5 . . . 4 (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴)) = ( -us “ ( L ‘𝐴))
3127, 30oveq12i 7402 . . 3 ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))
3231a1i 11 . 2 (𝐴 No → ((( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( R ‘𝐴)) |s (( -us ↾ (( L ‘𝐴) ∪ ( R ‘𝐴))) “ ( L ‘𝐴))) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
332, 24, 323eqtrd 2769 1 (𝐴 No → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  cres 5643  cima 5644  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392   No csur 27558   |s cscut 27701   L cleft 27760   R cright 27761   -us cnegs 27932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-negs 27934
This theorem is referenced by:  negs0s  27939  negs1s  27940  negsproplem3  27943  negsid  27954  negsunif  27968  negsbdaylem  27969
  Copyright terms: Public domain W3C validator