|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > negsfn | Structured version Visualization version GIF version | ||
| Description: Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| negsfn | ⊢ -us Fn No | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-negs 28054 | . 2 ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) | |
| 2 | 1 | norecfn 27980 | 1 ⊢ -us Fn No | 
| Colors of variables: wff setvar class | 
| Syntax hints: Vcvv 3479 “ cima 5687 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 No csur 27685 |s cscut 27828 L cleft 27885 R cright 27886 -us cnegs 28052 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-1o 8507 df-2o 8508 df-no 27688 df-slt 27689 df-bday 27690 df-sslt 27827 df-scut 27829 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec 27972 df-negs 28054 | 
| This theorem is referenced by: negsval 28058 negs1s 28060 negsproplem2 28062 negsproplem4 28064 negsproplem5 28065 negsproplem6 28066 negsid 28074 negsf 28085 negsunif 28088 negsbdaylem 28089 zscut 28394 renegscl 28431 | 
| Copyright terms: Public domain | W3C validator |