![]() |
Metamath
Proof Explorer Theorem List (p. 275 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cofcutr1d 27401* | If ð is the cut of ðī and ðĩ, then ðī is cofinal with ( L âð). First half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 23-Jan-2025.) |
âĒ (ð â ðī <<s ðĩ) & âĒ (ð â ð = (ðī |s ðĩ)) â âĒ (ð â âðĨ â ( L âð)âðĶ â ðī ðĨ âĪs ðĶ) | ||
Theorem | cofcutr2d 27402* | If ð is the cut of ðī and ðĩ, then ðĩ is coinitial with ( R âð). Second half of theorem 2.9 of [Gonshor] p. 12. (Contributed by Scott Fenton, 25-Sep-2024.) |
âĒ (ð â ðī <<s ðĩ) & âĒ (ð â ð = (ðī |s ðĩ)) â âĒ (ð â âð§ â ( R âð)âðĪ â ðĩ ðĪ âĪs ð§) | ||
Theorem | cofcutrtime 27403* | If ð is the cut of ðī and ðĩ and all of ðī and ðĩ are older than ð, then ( L âð) is cofinal with ðī and ( R âð) is coinitial with ðĩ. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.) |
âĒ (((ðī ⊠ðĩ) â ( O â( bday âð)) ⧠ðī <<s ðĩ ⧠ð = (ðī |s ðĩ)) â (âðĨ â ðī âðĶ â ( L âð)ðĨ âĪs ðĶ ⧠âð§ â ðĩ âðĪ â ( R âð)ðĪ âĪs ð§)) | ||
Theorem | cofcutrtime1d 27404* | If ð is a timely cut of ðī and ðĩ, then ( L âð) is cofinal with ðī. (Contributed by Scott Fenton, 23-Jan-2025.) |
âĒ (ð â (ðī ⊠ðĩ) â ( O â( bday âð))) & âĒ (ð â ðī <<s ðĩ) & âĒ (ð â ð = (ðī |s ðĩ)) â âĒ (ð â âðĨ â ðī âðĶ â ( L âð)ðĨ âĪs ðĶ) | ||
Theorem | cofcutrtime2d 27405* | If ð is a timely cut of ðī and ðĩ, then ( R âð) is coinitial with ðĩ. (Contributed by Scott Fenton, 23-Jan-2025.) |
âĒ (ð â (ðī ⊠ðĩ) â ( O â( bday âð))) & âĒ (ð â ðī <<s ðĩ) & âĒ (ð â ð = (ðī |s ðĩ)) â âĒ (ð â âð§ â ðĩ âðĪ â ( R âð)ðĪ âĪs ð§) | ||
Theorem | cofss 27406* | Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â ðī) â âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĨ âĪs ðĶ) | ||
Theorem | coiniss 27407* | Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â ðī) â âĒ (ð â âðĨ â ðĩ âðĶ â ðī ðĶ âĪs ðĨ) | ||
Theorem | cutlt 27408* | Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025.) |
âĒ (ð â ðŋ <<s ð ) & âĒ (ð â ðī = (ðŋ |s ð )) & âĒ (ð â ð â ðŋ) â âĒ (ð â ðī = (({ð} ⊠{ðĶ â ðŋ âĢ ð <s ðĶ}) |s ð )) | ||
Theorem | cutpos 27409* | Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â 0s <s ðī) â âĒ (ð â ðī = (({ 0s } ⊠{ðĨ â ( L âðī) âĢ 0s <s ðĨ}) |s ( R âðī))) | ||
Syntax | cnorec 27410 | Declare the syntax for surreal recursion of one variable. |
class norec (ðđ) | ||
Definition | df-norec 27411* | Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ norec (ðđ) = frecs({âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))}, No , ðđ) | ||
Theorem | lrrecval 27412* | The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship ð that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of ð . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ ((ðī â No ⧠ðĩ â No ) â (ðīð ðĩ â ðī â (( L âðĩ) ⊠( R âðĩ)))) | ||
Theorem | lrrecval2 27413* | Next, we establish an alternate expression for ð . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ ((ðī â No ⧠ðĩ â No ) â (ðīð ðĩ â ( bday âðī) â ( bday âðĩ))) | ||
Theorem | lrrecpo 27414* | Now, we establish that ð is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ ð Po No | ||
Theorem | lrrecse 27415* | Next, we show that ð is set-like over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ ð Se No | ||
Theorem | lrrecfr 27416* | Now we show that ð is founded over No . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ ð Fr No | ||
Theorem | lrrecpred 27417* | Finally, we calculate the value of the predecessor class over ð . (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻðĨ, ðĶâĐ âĢ ðĨ â (( L âðĶ) ⊠( R âðĶ))} â âĒ (ðī â No â Pred(ð , No , ðī) = (( L âðī) ⊠( R âðī))) | ||
Theorem | noinds 27418* | Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ (ðĨ = ðĶ â (ð â ð)) & âĒ (ðĨ = ðī â (ð â ð)) & âĒ (ðĨ â No â (âðĶ â (( L âðĨ) ⊠( R âðĨ))ð â ð)) â âĒ (ðī â No â ð) | ||
Theorem | norecfn 27419 | Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ðđ = norec (ðš) â âĒ ðđ Fn No | ||
Theorem | norecov 27420 | Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ðđ = norec (ðš) â âĒ (ðī â No â (ðđâðī) = (ðīðš(ðđ âū (( L âðī) ⊠( R âðī))))) | ||
Syntax | cnorec2 27421 | Declare the syntax for surreal recursion on two arguments. |
class norec2 (ðđ) | ||
Definition | df-norec2 27422* | Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ norec2 (ðđ) = frecs({âĻð, ðâĐ âĢ (ð â ( No à No ) ⧠ð â ( No à No ) ⧠(((1st âð){âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} (1st âð) âĻ (1st âð) = (1st âð)) ⧠((2nd âð){âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} (2nd âð) âĻ (2nd âð) = (2nd âð)) ⧠ð â ð))}, ( No à No ), ðđ) | ||
Theorem | noxpordpo 27423* | To get through most of the textbook defintions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} & âĒ ð = {âĻðĨ, ðĶâĐ âĢ (ðĨ â ( No à No ) ⧠ðĶ â ( No à No ) ⧠(((1st âðĨ)ð (1st âðĶ) âĻ (1st âðĨ) = (1st âðĶ)) ⧠((2nd âðĨ)ð (2nd âðĶ) âĻ (2nd âðĨ) = (2nd âðĶ)) ⧠ðĨ â ðĶ))} â âĒ ð Po ( No à No ) | ||
Theorem | noxpordfr 27424* | Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} & âĒ ð = {âĻðĨ, ðĶâĐ âĢ (ðĨ â ( No à No ) ⧠ðĶ â ( No à No ) ⧠(((1st âðĨ)ð (1st âðĶ) âĻ (1st âðĨ) = (1st âðĶ)) ⧠((2nd âðĨ)ð (2nd âðĶ) âĻ (2nd âðĨ) = (2nd âðĶ)) ⧠ðĨ â ðĶ))} â âĒ ð Fr ( No à No ) | ||
Theorem | noxpordse 27425* | Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} & âĒ ð = {âĻðĨ, ðĶâĐ âĢ (ðĨ â ( No à No ) ⧠ðĶ â ( No à No ) ⧠(((1st âðĨ)ð (1st âðĶ) âĻ (1st âðĨ) = (1st âðĶ)) ⧠((2nd âðĨ)ð (2nd âðĶ) âĻ (2nd âðĨ) = (2nd âðĶ)) ⧠ðĨ â ðĶ))} â âĒ ð Se ( No à No ) | ||
Theorem | noxpordpred 27426* | Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
âĒ ð = {âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} & âĒ ð = {âĻðĨ, ðĶâĐ âĢ (ðĨ â ( No à No ) ⧠ðĶ â ( No à No ) ⧠(((1st âðĨ)ð (1st âðĶ) âĻ (1st âðĨ) = (1st âðĶ)) ⧠((2nd âðĨ)ð (2nd âðĶ) âĻ (2nd âðĨ) = (2nd âðĶ)) ⧠ðĨ â ðĶ))} â âĒ ((ðī â No ⧠ðĩ â No ) â Pred(ð, ( No à No ), âĻðī, ðĩâĐ) = ((((( L âðī) ⊠( R âðī)) ⊠{ðī}) à ((( L âðĩ) ⊠( R âðĩ)) ⊠{ðĩ})) â {âĻðī, ðĩâĐ})) | ||
Theorem | no2indslem 27427* | Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
âĒ ð = {âĻð, ðâĐ âĢ ð â (( L âð) ⊠( R âð))} & âĒ (ðĨ = ð§ â (ð â ð)) & âĒ (ðĶ = ðĪ â (ð â ð)) & âĒ (ðĨ = ð§ â (ð â ð)) & âĒ (ðĨ = ðī â (ð â ð)) & âĒ (ðĶ = ðĩ â (ð â ð)) & âĒ ((ðĨ â No ⧠ðĶ â No ) â ((âð§ â (( L âðĨ) ⊠( R âðĨ))âðĪ â (( L âðĶ) ⊠( R âðĶ))ð ⧠âð§ â (( L âðĨ) ⊠( R âðĨ))ð ⧠âðĪ â (( L âðĶ) ⊠( R âðĶ))ð) â ð)) â âĒ ((ðī â No ⧠ðĩ â No ) â ð) | ||
Theorem | no2inds 27428* | Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024.) |
âĒ (ðĨ = ð§ â (ð â ð)) & âĒ (ðĶ = ðĪ â (ð â ð)) & âĒ (ðĨ = ð§ â (ð â ð)) & âĒ (ðĨ = ðī â (ð â ð)) & âĒ (ðĶ = ðĩ â (ð â ð)) & âĒ ((ðĨ â No ⧠ðĶ â No ) â ((âð§ â (( L âðĨ) ⊠( R âðĨ))âðĪ â (( L âðĶ) ⊠( R âðĶ))ð ⧠âð§ â (( L âðĨ) ⊠( R âðĨ))ð ⧠âðĪ â (( L âðĶ) ⊠( R âðĶ))ð) â ð)) â âĒ ((ðī â No ⧠ðĩ â No ) â ð) | ||
Theorem | norec2fn 27429 | The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ ðđ = norec2 (ðš) â âĒ ðđ Fn ( No à No ) | ||
Theorem | norec2ov 27430 | The value of the double-recursion surreal function. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ ðđ = norec2 (ðš) â âĒ ((ðī â No ⧠ðĩ â No ) â (ðīðđðĩ) = (âĻðī, ðĩâĐðš(ðđ âū ((((( L âðī) ⊠( R âðī)) ⊠{ðī}) à ((( L âðĩ) ⊠( R âðĩ)) ⊠{ðĩ})) â {âĻðī, ðĩâĐ})))) | ||
Theorem | no3inds 27431* | Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.) |
âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ (ð = ð â (ð â ð)) & âĒ ((ð â No ⧠ð â No ⧠ð â No ) â (((âð â (( L âð) ⊠( R âð))âð â (( L âð) ⊠( R âð))âð â (( L âð) ⊠( R âð))ð ⧠âð â (( L âð) ⊠( R âð))âð â (( L âð) ⊠( R âð))ð ⧠âð â (( L âð) ⊠( R âð))âð â (( L âð) ⊠( R âð))ð) ⧠(âð â (( L âð) ⊠( R âð))ð ⧠âð â (( L âð) ⊠( R âð))âð â (( L âð) ⊠( R âð))ð ⧠âð â (( L âð) ⊠( R âð))ð) ⧠âð â (( L âð) ⊠( R âð))ð) â ð)) â âĒ ((ð â No ⧠ð â No ⧠ð â No ) â ð) | ||
Syntax | cadds 27432 | Declare the syntax for surreal addition. |
class +s | ||
Definition | df-adds 27433* | Define surreal addition. This is the first of the field operations on the surreals. Definition from [Conway] p. 5. Definition from [Gonshor] p. 13. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ +s = norec2 ((ðĨ â V, ð â V âĶ (({ðĶ âĢ âð â ( L â(1st âðĨ))ðĶ = (ðð(2nd âðĨ))} ⊠{ð§ âĢ âð â ( L â(2nd âðĨ))ð§ = ((1st âðĨ)ðð)}) |s ({ðĶ âĢ âð â ( R â(1st âðĨ))ðĶ = (ðð(2nd âðĨ))} ⊠{ð§ âĢ âð â ( R â(2nd âðĨ))ð§ = ((1st âðĨ)ðð)})))) | ||
Theorem | addsfn 27434 | Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ +s Fn ( No à No ) | ||
Theorem | addsval 27435* | The value of surreal addition. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ ((ðī â No ⧠ðĩ â No ) â (ðī +s ðĩ) = (({ðĶ âĢ âð â ( L âðī)ðĶ = (ð +s ðĩ)} ⊠{ð§ âĢ âð â ( L âðĩ)ð§ = (ðī +s ð)}) |s ({ðĶ âĢ âð â ( R âðī)ðĶ = (ð +s ðĩ)} ⊠{ð§ âĢ âð â ( R âðĩ)ð§ = (ðī +s ð)}))) | ||
Theorem | addsval2 27436* | The value of surreal addition with different choices for each bound variable. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ) â (ðī +s ðĩ) = (({ðĶ âĢ âð â ( L âðī)ðĶ = (ð +s ðĩ)} ⊠{ð§ âĢ âð â ( L âðĩ)ð§ = (ðī +s ð)}) |s ({ðĪ âĢ âð â ( R âðī)ðĪ = (ð +s ðĩ)} ⊠{ðĄ âĢ âð â ( R âðĩ)ðĄ = (ðī +s ð )}))) | ||
Theorem | addsrid 27437 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ (ðī â No â (ðī +s 0s ) = ðī) | ||
Theorem | addsridd 27438 | Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ (ð â ðī â No ) â âĒ (ð â (ðī +s 0s ) = ðī) | ||
Theorem | addscom 27439 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ ((ðī â No ⧠ðĩ â No ) â (ðī +s ðĩ) = (ðĩ +s ðī)) | ||
Theorem | addscomd 27440 | Surreal addition commutes. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) â âĒ (ð â (ðī +s ðĩ) = (ðĩ +s ðī)) | ||
Theorem | addslid 27441 | Surreal addition to zero is identity. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ðī â No â ( 0s +s ðī) = ðī) | ||
Theorem | addsproplem1 27442* | Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 8395 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) & âĒ (ð â ((( bday âðī) +no ( bday âðĩ)) ⊠(( bday âðī) +no ( bday âðķ))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð)))) â âĒ (ð â ((ðī +s ðĩ) â No ⧠(ðĩ <s ðķ â (ðĩ +s ðī) <s (ðķ +s ðī)))) | ||
Theorem | addsproplem2 27443* | Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â ({ð âĢ âð â ( L âð)ð = (ð +s ð)} ⊠{ð âĢ âð â ( L âð)ð = (ð +s ð)}) <<s ({ðĪ âĢ âð â ( R âð)ðĪ = (ð +s ð)} ⊠{ðĄ âĢ âð â ( R âð)ðĄ = (ð +s ð )})) | ||
Theorem | addsproplem3 27444* | Lemma for surreal addition properties. Show the cut properties of surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â ((ð +s ð) â No ⧠({ð âĢ âð â ( L âð)ð = (ð +s ð)} ⊠{ð âĢ âð â ( L âð)ð = (ð +s ð)}) <<s {(ð +s ð)} ⧠{(ð +s ð)} <<s ({ðĪ âĢ âð â ( R âð)ðĪ = (ð +s ð)} ⊠{ðĄ âĢ âð â ( R âð)ðĄ = (ð +s ð )}))) | ||
Theorem | addsproplem4 27445* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when ð is older than ð. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð <s ð) & âĒ (ð â ( bday âð) â ( bday âð)) â âĒ (ð â (ð +s ð) <s (ð +s ð)) | ||
Theorem | addsproplem5 27446* | Lemma for surreal addition properties. Show the second half of the inductive hypothesis when ð is older than ð. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð <s ð) & âĒ (ð â ( bday âð) â ( bday âð)) â âĒ (ð â (ð +s ð) <s (ð +s ð)) | ||
Theorem | addsproplem6 27447* | Lemma for surreal addition properties. Finally, we show the second half of the induction hypothesis when ð and ð are the same age. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð <s ð) & âĒ (ð â ( bday âð) = ( bday âð)) â âĒ (ð â (ð +s ð) <s (ð +s ð)) | ||
Theorem | addsproplem7 27448* | Lemma for surreal addition properties. Putting together the three previous lemmas, we now show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â âðĨ â No âðĶ â No âð§ â No (((( bday âðĨ) +no ( bday âðĶ)) ⊠(( bday âðĨ) +no ( bday âð§))) â ((( bday âð) +no ( bday âð)) ⊠(( bday âð) +no ( bday âð))) â ((ðĨ +s ðĶ) â No ⧠(ðĶ <s ð§ â (ðĶ +s ðĨ) <s (ð§ +s ðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â ð <s ð) â âĒ (ð â (ð +s ð) <s (ð +s ð)) | ||
Theorem | addsprop 27449 | Inductively show that surreal addition is closed and compatible with less-than. This proof follows from induction on the birthdays of the surreal numbers involved. This pattern occurs throughout surreal development. Theorem 3.1 of [Gonshor] p. 14. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ð â No ⧠ð â No ⧠ð â No ) â ((ð +s ð) â No ⧠(ð <s ð â (ð +s ð) <s (ð +s ð)))) | ||
Theorem | addscutlem 27450* | Lemma for addscut 27451. Show the statement with some additional distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.) |
âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â ((ð +s ð) â No ⧠({ð âĢ âð â ( L âð)ð = (ð +s ð)} ⊠{ð âĢ âð â ( L âð)ð = (ð +s ð)}) <<s {(ð +s ð)} ⧠{(ð +s ð)} <<s ({ðĪ âĢ âð â ( R âð)ðĪ = (ð +s ð)} ⊠{ðĄ âĢ âð â ( R âð)ðĄ = (ð +s ð )}))) | ||
Theorem | addscut 27451* | Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â ((ð +s ð) â No ⧠({ð âĢ âð â ( L âð)ð = (ð +s ð)} ⊠{ð âĢ âð â ( L âð)ð = (ð +s ð)}) <<s {(ð +s ð)} ⧠{(ð +s ð)} <<s ({ðĪ âĢ âð â ( R âð)ðĪ = (ð +s ð)} ⊠{ðĄ âĢ âð â ( R âð)ðĄ = (ð +s ð )}))) | ||
Theorem | addscut2 27452* | Show that the cut involved in surreal addition is legitimate. (Contributed by Scott Fenton, 8-Mar-2025.) |
âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â ({ð âĢ âð â ( L âð)ð = (ð +s ð)} ⊠{ð âĢ âð â ( L âð)ð = (ð +s ð)}) <<s ({ðĪ âĢ âð â ( R âð)ðĪ = (ð +s ð)} ⊠{ðĄ âĢ âð â ( R âð)ðĄ = (ð +s ð )})) | ||
Theorem | addscld 27453 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ð â No ) & âĒ (ð â ð â No ) â âĒ (ð â (ð +s ð) â No ) | ||
Theorem | addscl 27454 | Surreal numbers are closed under addition. Theorem 6(iii) of [Conway[ p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ) â (ðī +s ðĩ) â No ) | ||
Theorem | addsf 27455 | Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ +s :( No à No )âķ No | ||
Theorem | addsfo 27456 | Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ +s :( No à No )âontoâ No | ||
Theorem | sltadd1im 27457 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī <s ðĩ â (ðī +s ðķ) <s (ðĩ +s ðķ))) | ||
Theorem | sltadd2im 27458 | Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī <s ðĩ â (ðķ +s ðī) <s (ðķ +s ðĩ))) | ||
Theorem | sleadd1im 27459 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) âĪs (ðĩ +s ðķ) â ðī âĪs ðĩ)) | ||
Theorem | sleadd2im 27460 | Surreal less-than or equal cancels under addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðķ +s ðī) âĪs (ðķ +s ðĩ) â ðī âĪs ðĩ)) | ||
Theorem | sleadd1 27461 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī âĪs ðĩ â (ðī +s ðķ) âĪs (ðĩ +s ðķ))) | ||
Theorem | sleadd2 27462 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī âĪs ðĩ â (ðķ +s ðī) âĪs (ðķ +s ðĩ))) | ||
Theorem | sltadd2 27463 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī <s ðĩ â (ðķ +s ðī) <s (ðķ +s ðĩ))) | ||
Theorem | sltadd1 27464 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â (ðī <s ðĩ â (ðī +s ðķ) <s (ðĩ +s ðķ))) | ||
Theorem | addscan2 27465 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðķ) = (ðĩ +s ðķ) â ðī = ðĩ)) | ||
Theorem | addscan1 27466 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðķ +s ðī) = (ðķ +s ðĩ) â ðī = ðĩ)) | ||
Theorem | sleadd1d 27467 | Addition to both sides of surreal less-than or equal. Theorem 5 of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī âĪs ðĩ â (ðī +s ðķ) âĪs (ðĩ +s ðķ))) | ||
Theorem | sleadd2d 27468 | Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī âĪs ðĩ â (ðķ +s ðī) âĪs (ðķ +s ðĩ))) | ||
Theorem | sltadd2d 27469 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī <s ðĩ â (ðķ +s ðī) <s (ðķ +s ðĩ))) | ||
Theorem | sltadd1d 27470 | Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī <s ðĩ â (ðī +s ðķ) <s (ðĩ +s ðķ))) | ||
Theorem | addscan2d 27471 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â ((ðī +s ðķ) = (ðĩ +s ðķ) â ðī = ðĩ)) | ||
Theorem | addscan1d 27472 | Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â ((ðķ +s ðī) = (ðķ +s ðĩ) â ðī = ðĩ)) | ||
Theorem | addsuniflem 27473* | Lemma for addsunif 27474. State the whole theorem with extra distinct variable conditions. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðŋ <<s ð ) & âĒ (ð â ð <<s ð) & âĒ (ð â ðī = (ðŋ |s ð )) & âĒ (ð â ðĩ = (ð |s ð)) â âĒ (ð â (ðī +s ðĩ) = (({ðĶ âĢ âð â ðŋ ðĶ = (ð +s ðĩ)} ⊠{ð§ âĢ âð â ð ð§ = (ðī +s ð)}) |s ({ðĪ âĢ âð â ð ðĪ = (ð +s ðĩ)} ⊠{ðĄ âĢ âð â ð ðĄ = (ðī +s ð )}))) | ||
Theorem | addsunif 27474* | Uniformity theorem for surreal addition. This theorem states that we can use any cuts that define ðī and ðĩ in the definition of surreal addition. Theorem 3.2 of [Gonshor] p. 15. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðŋ <<s ð ) & âĒ (ð â ð <<s ð) & âĒ (ð â ðī = (ðŋ |s ð )) & âĒ (ð â ðĩ = (ð |s ð)) â âĒ (ð â (ðī +s ðĩ) = (({ðĶ âĢ âð â ðŋ ðĶ = (ð +s ðĩ)} ⊠{ð§ âĢ âð â ð ð§ = (ðī +s ð)}) |s ({ðĪ âĢ âð â ð ðĪ = (ð +s ðĩ)} ⊠{ðĄ âĢ âð â ð ðĄ = (ðī +s ð )}))) | ||
Theorem | addsasslem1 27475* | Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â ((ðī +s ðĩ) +s ðķ) = ((({ðĶ âĢ âð â ( L âðī)ðĶ = ((ð +s ðĩ) +s ðķ)} ⊠{ð§ âĢ âð â ( L âðĩ)ð§ = ((ðī +s ð) +s ðķ)}) ⊠{ðĪ âĢ âð â ( L âðķ)ðĪ = ((ðī +s ðĩ) +s ð)}) |s (({ð âĢ âð â ( R âðī)ð = ((ð +s ðĩ) +s ðķ)} ⊠{ð âĢ âð â ( R âðĩ)ð = ((ðī +s ð) +s ðķ)}) ⊠{ð âĢ âð â ( R âðķ)ð = ((ðī +s ðĩ) +s ð)}))) | ||
Theorem | addsasslem2 27476* | Lemma for addition associativity. Expand the other form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī +s (ðĩ +s ðķ)) = ((({ðĶ âĢ âð â ( L âðī)ðĶ = (ð +s (ðĩ +s ðķ))} ⊠{ð§ âĢ âð â ( L âðĩ)ð§ = (ðī +s (ð +s ðķ))}) ⊠{ðĪ âĢ âð â ( L âðķ)ðĪ = (ðī +s (ðĩ +s ð))}) |s (({ð âĢ âð â ( R âðī)ð = (ð +s (ðĩ +s ðķ))} ⊠{ð âĢ âð â ( R âðĩ)ð = (ðī +s (ð +s ðķ))}) ⊠{ð âĢ âð â ( R âðķ)ð = (ðī +s (ðĩ +s ð))}))) | ||
Theorem | addsass 27477 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ⧠ðķ â No ) â ((ðī +s ðĩ) +s ðķ) = (ðī +s (ðĩ +s ðķ))) | ||
Theorem | addsassd 27478 | Surreal addition is associative. Part of theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 22-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â ((ðī +s ðĩ) +s ðķ) = (ðī +s (ðĩ +s ðķ))) | ||
Theorem | adds32d 27479 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â ((ðī +s ðĩ) +s ðķ) = ((ðī +s ðķ) +s ðĩ)) | ||
Theorem | adds12d 27480 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) â âĒ (ð â (ðī +s (ðĩ +s ðķ)) = (ðĩ +s (ðī +s ðķ))) | ||
Theorem | adds4d 27481 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) & âĒ (ð â ð· â No ) â âĒ (ð â ((ðī +s ðĩ) +s (ðķ +s ð·)) = ((ðī +s ðķ) +s (ðĩ +s ð·))) | ||
Theorem | adds42d 27482 | Rearrangement of four terms in a surreal sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðķ â No ) & âĒ (ð â ð· â No ) â âĒ (ð â ((ðī +s ðĩ) +s (ðķ +s ð·)) = ((ðī +s ðķ) +s (ð· +s ðĩ))) | ||
Syntax | cnegs 27483 | Declare the syntax for surreal negation. |
class -us | ||
Syntax | csubs 27484 | Declare the syntax for surreal subtraction. |
class -s | ||
Definition | df-negs 27485* | Define surreal negation. Definition from [Conway] p. 5. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ -us = norec ((ðĨ â V, ð â V âĶ ((ð â ( R âðĨ)) |s (ð â ( L âðĨ))))) | ||
Definition | df-subs 27486* | Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ -s = (ðĨ â No , ðĶ â No âĶ (ðĨ +s ( -us âðĶ))) | ||
Theorem | negsfn 27487 | Surreal negation is a function over surreals. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ -us Fn No | ||
Theorem | subsfn 27488 | Surreal subtraction is a function over pairs of surreals. (Contributed by Scott Fenton, 22-Jan-2025.) |
âĒ -s Fn ( No à No ) | ||
Theorem | negsval 27489 | The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ (ðī â No â ( -us âðī) = (( -us â ( R âðī)) |s ( -us â ( L âðī)))) | ||
Theorem | negs0s 27490 | Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
âĒ ( -us â 0s ) = 0s | ||
Theorem | negsproplem1 27491* | Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ð â No ) & âĒ (ð â ð â No ) & âĒ (ð â (( bday âð) ⊠( bday âð)) â (( bday âðī) ⊠( bday âðĩ))) â âĒ (ð â (( -us âð) â No ⧠(ð <s ð â ( -us âð) <s ( -us âð)))) | ||
Theorem | negsproplem2 27492* | Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) â âĒ (ð â ( -us â ( R âðī)) <<s ( -us â ( L âðī))) | ||
Theorem | negsproplem3 27493* | Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) â âĒ (ð â (( -us âðī) â No ⧠( -us â ( R âðī)) <<s {( -us âðī)} ⧠{( -us âðī)} <<s ( -us â ( L âðī)))) | ||
Theorem | negsproplem4 27494* | Lemma for surreal negation. Show the second half of the inductive hypothesis when ðī is simpler than ðĩ. (Contributed by Scott Fenton, 2-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðī <s ðĩ) & âĒ (ð â ( bday âðī) â ( bday âðĩ)) â âĒ (ð â ( -us âðĩ) <s ( -us âðī)) | ||
Theorem | negsproplem5 27495* | Lemma for surreal negation. Show the second half of the inductive hypothesis when ðĩ is simpler than ðī. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðī <s ðĩ) & âĒ (ð â ( bday âðĩ) â ( bday âðī)) â âĒ (ð â ( -us âðĩ) <s ( -us âðī)) | ||
Theorem | negsproplem6 27496* | Lemma for surreal negation. Show the second half of the inductive hypothesis when ðī is the same age as ðĩ. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðī <s ðĩ) & âĒ (ð â ( bday âðī) = ( bday âðĩ)) â âĒ (ð â ( -us âðĩ) <s ( -us âðī)) | ||
Theorem | negsproplem7 27497* | Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ð â âðĨ â No âðĶ â No ((( bday âðĨ) ⊠( bday âðĶ)) â (( bday âðī) ⊠( bday âðĩ)) â (( -us âðĨ) â No ⧠(ðĨ <s ðĶ â ( -us âðĶ) <s ( -us âðĨ))))) & âĒ (ð â ðī â No ) & âĒ (ð â ðĩ â No ) & âĒ (ð â ðī <s ðĩ) â âĒ (ð â ( -us âðĩ) <s ( -us âðī)) | ||
Theorem | negsprop 27498 | Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ ((ðī â No ⧠ðĩ â No ) â (( -us âðī) â No ⧠(ðī <s ðĩ â ( -us âðĩ) <s ( -us âðī)))) | ||
Theorem | negscl 27499 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ðī â No â ( -us âðī) â No ) | ||
Theorem | negscld 27500 | The surreals are closed under negation. Theorem 6(ii) of [Conway] p. 18. (Contributed by Scott Fenton, 3-Feb-2025.) |
âĒ (ð â ðī â No ) â âĒ (ð â ( -us âðī) â No ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |