Step | Hyp | Ref
| Expression |
1 | | cnm 24076 |
. 2
class
norm |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar π₯ |
5 | 2 | cv 1540 |
. . . . 5
class π€ |
6 | | cbs 17140 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(Baseβπ€) |
8 | 4 | cv 1540 |
. . . . 5
class π₯ |
9 | | c0g 17381 |
. . . . . 6
class
0g |
10 | 5, 9 | cfv 6540 |
. . . . 5
class
(0gβπ€) |
11 | | cds 17202 |
. . . . . 6
class
dist |
12 | 5, 11 | cfv 6540 |
. . . . 5
class
(distβπ€) |
13 | 8, 10, 12 | co 7405 |
. . . 4
class (π₯(distβπ€)(0gβπ€)) |
14 | 4, 7, 13 | cmpt 5230 |
. . 3
class (π₯ β (Baseβπ€) β¦ (π₯(distβπ€)(0gβπ€))) |
15 | 2, 3, 14 | cmpt 5230 |
. 2
class (π€ β V β¦ (π₯ β (Baseβπ€) β¦ (π₯(distβπ€)(0gβπ€)))) |
16 | 1, 15 | wceq 1541 |
1
wff norm =
(π€ β V β¦ (π₯ β (Baseβπ€) β¦ (π₯(distβπ€)(0gβπ€)))) |