| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nm | Structured version Visualization version GIF version | ||
| Description: Define the norm on a group or ring (when it makes sense) in terms of the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-nm | ⊢ norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnm 24589 | . 2 class norm | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 6 | cbs 17247 | . . . . 5 class Base | |
| 7 | 5, 6 | cfv 6561 | . . . 4 class (Base‘𝑤) |
| 8 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 9 | c0g 17484 | . . . . . 6 class 0g | |
| 10 | 5, 9 | cfv 6561 | . . . . 5 class (0g‘𝑤) |
| 11 | cds 17306 | . . . . . 6 class dist | |
| 12 | 5, 11 | cfv 6561 | . . . . 5 class (dist‘𝑤) |
| 13 | 8, 10, 12 | co 7431 | . . . 4 class (𝑥(dist‘𝑤)(0g‘𝑤)) |
| 14 | 4, 7, 13 | cmpt 5225 | . . 3 class (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤))) |
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
| 16 | 1, 15 | wceq 1540 | 1 wff norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: nmfval 24601 |
| Copyright terms: Public domain | W3C validator |