MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   GIF version

Theorem nmfval 24417
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (normβ€˜π‘Š)
nmfval.x 𝑋 = (Baseβ€˜π‘Š)
nmfval.z 0 = (0gβ€˜π‘Š)
nmfval.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
nmfval 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
Distinct variable groups:   π‘₯,𝐷   π‘₯,π‘Š   π‘₯,𝑋   π‘₯, 0
Allowed substitution hint:   𝑁(π‘₯)

Proof of Theorem nmfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2 𝑁 = (normβ€˜π‘Š)
2 fveq2 6891 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
3 nmfval.x . . . . . 6 𝑋 = (Baseβ€˜π‘Š)
42, 3eqtr4di 2789 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑋)
5 fveq2 6891 . . . . . . 7 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = (distβ€˜π‘Š))
6 nmfval.d . . . . . . 7 𝐷 = (distβ€˜π‘Š)
75, 6eqtr4di 2789 . . . . . 6 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = 𝐷)
8 eqidd 2732 . . . . . 6 (𝑀 = π‘Š β†’ π‘₯ = π‘₯)
9 fveq2 6891 . . . . . . 7 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = (0gβ€˜π‘Š))
10 nmfval.z . . . . . . 7 0 = (0gβ€˜π‘Š)
119, 10eqtr4di 2789 . . . . . 6 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = 0 )
127, 8, 11oveq123d 7433 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€)) = (π‘₯𝐷 0 ))
134, 12mpteq12dv 5239 . . . 4 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€))) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
14 df-nm 24411 . . . 4 norm = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€))))
15 eqid 2731 . . . . . 6 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
16 df-ov 7415 . . . . . . . 8 (π‘₯𝐷 0 ) = (π·β€˜βŸ¨π‘₯, 0 ⟩)
17 fvrn0 6921 . . . . . . . 8 (π·β€˜βŸ¨π‘₯, 0 ⟩) ∈ (ran 𝐷 βˆͺ {βˆ…})
1816, 17eqeltri 2828 . . . . . . 7 (π‘₯𝐷 0 ) ∈ (ran 𝐷 βˆͺ {βˆ…})
1918a1i 11 . . . . . 6 (π‘₯ ∈ 𝑋 β†’ (π‘₯𝐷 0 ) ∈ (ran 𝐷 βˆͺ {βˆ…}))
2015, 19fmpti 7113 . . . . 5 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )):π‘‹βŸΆ(ran 𝐷 βˆͺ {βˆ…})
213fvexi 6905 . . . . 5 𝑋 ∈ V
226fvexi 6905 . . . . . . 7 𝐷 ∈ V
2322rnex 7907 . . . . . 6 ran 𝐷 ∈ V
24 p0ex 5382 . . . . . 6 {βˆ…} ∈ V
2523, 24unex 7737 . . . . 5 (ran 𝐷 βˆͺ {βˆ…}) ∈ V
26 fex2 7928 . . . . 5 (((π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )):π‘‹βŸΆ(ran 𝐷 βˆͺ {βˆ…}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 βˆͺ {βˆ…}) ∈ V) β†’ (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) ∈ V)
2720, 21, 25, 26mp3an 1460 . . . 4 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) ∈ V
2813, 14, 27fvmpt 6998 . . 3 (π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
29 fvprc 6883 . . . . 5 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = βˆ…)
30 mpt0 6692 . . . . 5 (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )) = βˆ…
3129, 30eqtr4di 2789 . . . 4 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )))
32 fvprc 6883 . . . . . 6 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
333, 32eqtrid 2783 . . . . 5 (Β¬ π‘Š ∈ V β†’ 𝑋 = βˆ…)
3433mpteq1d 5243 . . . 4 (Β¬ π‘Š ∈ V β†’ (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) = (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )))
3531, 34eqtr4d 2774 . . 3 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
3628, 35pm2.61i 182 . 2 (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
371, 36eqtri 2759 1 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1540   ∈ wcel 2105  Vcvv 3473   βˆͺ cun 3946  βˆ…c0 4322  {csn 4628  βŸ¨cop 4634   ↦ cmpt 5231  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  Basecbs 17151  distcds 17213  0gc0g 17392  normcnm 24405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-nm 24411
This theorem is referenced by:  nmval  24418  nmfval0  24419  nmpropd  24423  subgnm  24462  tngnm  24488  cnfldnm  24615  nmcn  24680  ressnm  32561
  Copyright terms: Public domain W3C validator