MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   GIF version

Theorem nmfval 24492
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmfval 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2 𝑁 = (norm‘𝑊)
2 fveq2 6826 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 nmfval.x . . . . . 6 𝑋 = (Base‘𝑊)
42, 3eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑋)
5 fveq2 6826 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
6 nmfval.d . . . . . . 7 𝐷 = (dist‘𝑊)
75, 6eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷)
8 eqidd 2730 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6826 . . . . . . 7 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
10 nmfval.z . . . . . . 7 0 = (0g𝑊)
119, 10eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (0g𝑤) = 0 )
127, 8, 11oveq123d 7374 . . . . 5 (𝑤 = 𝑊 → (𝑥(dist‘𝑤)(0g𝑤)) = (𝑥𝐷 0 ))
134, 12mpteq12dv 5182 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
14 df-nm 24486 . . . 4 norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
15 eqid 2729 . . . . . 6 (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
16 df-ov 7356 . . . . . . . 8 (𝑥𝐷 0 ) = (𝐷‘⟨𝑥, 0 ⟩)
17 fvrn0 6854 . . . . . . . 8 (𝐷‘⟨𝑥, 0 ⟩) ∈ (ran 𝐷 ∪ {∅})
1816, 17eqeltri 2824 . . . . . . 7 (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅})
1918a1i 11 . . . . . 6 (𝑥𝑋 → (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅}))
2015, 19fmpti 7050 . . . . 5 (𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅})
213fvexi 6840 . . . . 5 𝑋 ∈ V
226fvexi 6840 . . . . . . 7 𝐷 ∈ V
2322rnex 7850 . . . . . 6 ran 𝐷 ∈ V
24 p0ex 5326 . . . . . 6 {∅} ∈ V
2523, 24unex 7684 . . . . 5 (ran 𝐷 ∪ {∅}) ∈ V
26 fex2 7876 . . . . 5 (((𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 ∪ {∅}) ∈ V) → (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V)
2720, 21, 25, 26mp3an 1463 . . . 4 (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V
2813, 14, 27fvmpt 6934 . . 3 (𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
29 fvprc 6818 . . . . 5 𝑊 ∈ V → (norm‘𝑊) = ∅)
30 mpt0 6628 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )) = ∅
3129, 30eqtr4di 2782 . . . 4 𝑊 ∈ V → (norm‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
32 fvprc 6818 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
333, 32eqtrid 2776 . . . . 5 𝑊 ∈ V → 𝑋 = ∅)
3433mpteq1d 5185 . . . 4 𝑊 ∈ V → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
3531, 34eqtr4d 2767 . . 3 𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
3628, 35pm2.61i 182 . 2 (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
371, 36eqtri 2752 1 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  c0 4286  {csn 4579  cop 4585  cmpt 5176  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  distcds 17188  0gc0g 17361  normcnm 24480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-nm 24486
This theorem is referenced by:  nmval  24493  nmfval0  24494  nmpropd  24498  subgnm  24537  tngnm  24555  cnfldnm  24682  nmcn  24749  ressnm  32919
  Copyright terms: Public domain W3C validator