MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   GIF version

Theorem nmfval 24021
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (normβ€˜π‘Š)
nmfval.x 𝑋 = (Baseβ€˜π‘Š)
nmfval.z 0 = (0gβ€˜π‘Š)
nmfval.d 𝐷 = (distβ€˜π‘Š)
Assertion
Ref Expression
nmfval 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
Distinct variable groups:   π‘₯,𝐷   π‘₯,π‘Š   π‘₯,𝑋   π‘₯, 0
Allowed substitution hint:   𝑁(π‘₯)

Proof of Theorem nmfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2 𝑁 = (normβ€˜π‘Š)
2 fveq2 6875 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
3 nmfval.x . . . . . 6 𝑋 = (Baseβ€˜π‘Š)
42, 3eqtr4di 2789 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑋)
5 fveq2 6875 . . . . . . 7 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = (distβ€˜π‘Š))
6 nmfval.d . . . . . . 7 𝐷 = (distβ€˜π‘Š)
75, 6eqtr4di 2789 . . . . . 6 (𝑀 = π‘Š β†’ (distβ€˜π‘€) = 𝐷)
8 eqidd 2732 . . . . . 6 (𝑀 = π‘Š β†’ π‘₯ = π‘₯)
9 fveq2 6875 . . . . . . 7 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = (0gβ€˜π‘Š))
10 nmfval.z . . . . . . 7 0 = (0gβ€˜π‘Š)
119, 10eqtr4di 2789 . . . . . 6 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = 0 )
127, 8, 11oveq123d 7411 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€)) = (π‘₯𝐷 0 ))
134, 12mpteq12dv 5229 . . . 4 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€))) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
14 df-nm 24015 . . . 4 norm = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘€) ↦ (π‘₯(distβ€˜π‘€)(0gβ€˜π‘€))))
15 eqid 2731 . . . . . 6 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
16 df-ov 7393 . . . . . . . 8 (π‘₯𝐷 0 ) = (π·β€˜βŸ¨π‘₯, 0 ⟩)
17 fvrn0 6905 . . . . . . . 8 (π·β€˜βŸ¨π‘₯, 0 ⟩) ∈ (ran 𝐷 βˆͺ {βˆ…})
1816, 17eqeltri 2828 . . . . . . 7 (π‘₯𝐷 0 ) ∈ (ran 𝐷 βˆͺ {βˆ…})
1918a1i 11 . . . . . 6 (π‘₯ ∈ 𝑋 β†’ (π‘₯𝐷 0 ) ∈ (ran 𝐷 βˆͺ {βˆ…}))
2015, 19fmpti 7093 . . . . 5 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )):π‘‹βŸΆ(ran 𝐷 βˆͺ {βˆ…})
213fvexi 6889 . . . . 5 𝑋 ∈ V
226fvexi 6889 . . . . . . 7 𝐷 ∈ V
2322rnex 7882 . . . . . 6 ran 𝐷 ∈ V
24 p0ex 5372 . . . . . 6 {βˆ…} ∈ V
2523, 24unex 7713 . . . . 5 (ran 𝐷 βˆͺ {βˆ…}) ∈ V
26 fex2 7903 . . . . 5 (((π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )):π‘‹βŸΆ(ran 𝐷 βˆͺ {βˆ…}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 βˆͺ {βˆ…}) ∈ V) β†’ (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) ∈ V)
2720, 21, 25, 26mp3an 1461 . . . 4 (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) ∈ V
2813, 14, 27fvmpt 6981 . . 3 (π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
29 fvprc 6867 . . . . 5 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = βˆ…)
30 mpt0 6676 . . . . 5 (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )) = βˆ…
3129, 30eqtr4di 2789 . . . 4 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )))
32 fvprc 6867 . . . . . 6 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
333, 32eqtrid 2783 . . . . 5 (Β¬ π‘Š ∈ V β†’ 𝑋 = βˆ…)
3433mpteq1d 5233 . . . 4 (Β¬ π‘Š ∈ V β†’ (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )) = (π‘₯ ∈ βˆ… ↦ (π‘₯𝐷 0 )))
3531, 34eqtr4d 2774 . . 3 (Β¬ π‘Š ∈ V β†’ (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 )))
3628, 35pm2.61i 182 . 2 (normβ€˜π‘Š) = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
371, 36eqtri 2759 1 𝑁 = (π‘₯ ∈ 𝑋 ↦ (π‘₯𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1541   ∈ wcel 2106  Vcvv 3470   βˆͺ cun 3939  βˆ…c0 4315  {csn 4619  βŸ¨cop 4625   ↦ cmpt 5221  ran crn 5667  βŸΆwf 6525  β€˜cfv 6529  (class class class)co 7390  Basecbs 17123  distcds 17185  0gc0g 17364  normcnm 24009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7705
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3430  df-v 3472  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4520  df-pw 4595  df-sn 4620  df-pr 4622  df-op 4626  df-uni 4899  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6481  df-fun 6531  df-fn 6532  df-f 6533  df-fv 6537  df-ov 7393  df-nm 24015
This theorem is referenced by:  nmval  24022  nmfval0  24023  nmpropd  24027  subgnm  24066  tngnm  24092  cnfldnm  24219  nmcn  24284  ressnm  31994
  Copyright terms: Public domain W3C validator