Step | Hyp | Ref
| Expression |
1 | | nmfval.n |
. 2
⊢ 𝑁 = (norm‘𝑊) |
2 | | fveq2 6768 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
3 | | nmfval.x |
. . . . . 6
⊢ 𝑋 = (Base‘𝑊) |
4 | 2, 3 | eqtr4di 2797 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑋) |
5 | | fveq2 6768 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) |
6 | | nmfval.d |
. . . . . . 7
⊢ 𝐷 = (dist‘𝑊) |
7 | 5, 6 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷) |
8 | | eqidd 2740 |
. . . . . 6
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
9 | | fveq2 6768 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = (0g‘𝑊)) |
10 | | nmfval.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
11 | 9, 10 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = 0 ) |
12 | 7, 8, 11 | oveq123d 7289 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥(dist‘𝑤)(0g‘𝑤)) = (𝑥𝐷 0 )) |
13 | 4, 12 | mpteq12dv 5169 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤))) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
14 | | df-nm 23719 |
. . . 4
⊢ norm =
(𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
15 | | eqid 2739 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
16 | | df-ov 7271 |
. . . . . . . 8
⊢ (𝑥𝐷 0 ) = (𝐷‘〈𝑥, 0 〉) |
17 | | fvrn0 6796 |
. . . . . . . 8
⊢ (𝐷‘〈𝑥, 0 〉) ∈ (ran 𝐷 ∪
{∅}) |
18 | 16, 17 | eqeltri 2836 |
. . . . . . 7
⊢ (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪
{∅}) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 → (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪
{∅})) |
20 | 15, 19 | fmpti 6980 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) |
21 | 3 | fvexi 6782 |
. . . . 5
⊢ 𝑋 ∈ V |
22 | 6 | fvexi 6782 |
. . . . . . 7
⊢ 𝐷 ∈ V |
23 | 22 | rnex 7746 |
. . . . . 6
⊢ ran 𝐷 ∈ V |
24 | | p0ex 5310 |
. . . . . 6
⊢ {∅}
∈ V |
25 | 23, 24 | unex 7587 |
. . . . 5
⊢ (ran
𝐷 ∪ {∅}) ∈
V |
26 | | fex2 7767 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) ∈
V) |
27 | 20, 21, 25, 26 | mp3an 1459 |
. . . 4
⊢ (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) ∈
V |
28 | 13, 14, 27 | fvmpt 6869 |
. . 3
⊢ (𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
29 | | fvprc 6760 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) =
∅) |
30 | | mpt0 6571 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )) =
∅ |
31 | 29, 30 | eqtr4di 2797 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 ))) |
32 | | fvprc 6760 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
33 | 3, 32 | eqtrid 2791 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑋 = ∅) |
34 | 33 | mpteq1d 5173 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 ))) |
35 | 31, 34 | eqtr4d 2782 |
. . 3
⊢ (¬
𝑊 ∈ V →
(norm‘𝑊) = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 ))) |
36 | 28, 35 | pm2.61i 182 |
. 2
⊢
(norm‘𝑊) =
(𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |
37 | 1, 36 | eqtri 2767 |
1
⊢ 𝑁 = (𝑥 ∈ 𝑋 ↦ (𝑥𝐷 0 )) |