MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval Structured version   Visualization version   GIF version

Theorem nmfval 23725
Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
Assertion
Ref Expression
nmfval 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem nmfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nmfval.n . 2 𝑁 = (norm‘𝑊)
2 fveq2 6768 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 nmfval.x . . . . . 6 𝑋 = (Base‘𝑊)
42, 3eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑋)
5 fveq2 6768 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
6 nmfval.d . . . . . . 7 𝐷 = (dist‘𝑊)
75, 6eqtr4di 2797 . . . . . 6 (𝑤 = 𝑊 → (dist‘𝑤) = 𝐷)
8 eqidd 2740 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
9 fveq2 6768 . . . . . . 7 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
10 nmfval.z . . . . . . 7 0 = (0g𝑊)
119, 10eqtr4di 2797 . . . . . 6 (𝑤 = 𝑊 → (0g𝑤) = 0 )
127, 8, 11oveq123d 7289 . . . . 5 (𝑤 = 𝑊 → (𝑥(dist‘𝑤)(0g𝑤)) = (𝑥𝐷 0 ))
134, 12mpteq12dv 5169 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
14 df-nm 23719 . . . 4 norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
15 eqid 2739 . . . . . 6 (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
16 df-ov 7271 . . . . . . . 8 (𝑥𝐷 0 ) = (𝐷‘⟨𝑥, 0 ⟩)
17 fvrn0 6796 . . . . . . . 8 (𝐷‘⟨𝑥, 0 ⟩) ∈ (ran 𝐷 ∪ {∅})
1816, 17eqeltri 2836 . . . . . . 7 (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅})
1918a1i 11 . . . . . 6 (𝑥𝑋 → (𝑥𝐷 0 ) ∈ (ran 𝐷 ∪ {∅}))
2015, 19fmpti 6980 . . . . 5 (𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅})
213fvexi 6782 . . . . 5 𝑋 ∈ V
226fvexi 6782 . . . . . . 7 𝐷 ∈ V
2322rnex 7746 . . . . . 6 ran 𝐷 ∈ V
24 p0ex 5310 . . . . . 6 {∅} ∈ V
2523, 24unex 7587 . . . . 5 (ran 𝐷 ∪ {∅}) ∈ V
26 fex2 7767 . . . . 5 (((𝑥𝑋 ↦ (𝑥𝐷 0 )):𝑋⟶(ran 𝐷 ∪ {∅}) ∧ 𝑋 ∈ V ∧ (ran 𝐷 ∪ {∅}) ∈ V) → (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V)
2720, 21, 25, 26mp3an 1459 . . . 4 (𝑥𝑋 ↦ (𝑥𝐷 0 )) ∈ V
2813, 14, 27fvmpt 6869 . . 3 (𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
29 fvprc 6760 . . . . 5 𝑊 ∈ V → (norm‘𝑊) = ∅)
30 mpt0 6571 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )) = ∅
3129, 30eqtr4di 2797 . . . 4 𝑊 ∈ V → (norm‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
32 fvprc 6760 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
333, 32eqtrid 2791 . . . . 5 𝑊 ∈ V → 𝑋 = ∅)
3433mpteq1d 5173 . . . 4 𝑊 ∈ V → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥 ∈ ∅ ↦ (𝑥𝐷 0 )))
3531, 34eqtr4d 2782 . . 3 𝑊 ∈ V → (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 )))
3628, 35pm2.61i 182 . 2 (norm‘𝑊) = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
371, 36eqtri 2767 1 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109  Vcvv 3430  cun 3889  c0 4261  {csn 4566  cop 4572  cmpt 5161  ran crn 5589  wf 6426  cfv 6430  (class class class)co 7268  Basecbs 16893  distcds 16952  0gc0g 17131  normcnm 23713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-nm 23719
This theorem is referenced by:  nmval  23726  nmfval0  23727  nmpropd  23731  subgnm  23770  tngnm  23796  cnfldnm  23923  nmcn  23988  ressnm  31215
  Copyright terms: Public domain W3C validator