Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ngp | Structured version Visualization version GIF version |
Description: Define a normed group, which is a group with a right-translation-invariant metric. This is not a standard notion, but is helpful as the most general context in which a metric-like norm makes sense. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
df-ngp | ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cngp 23742 | . 2 class NrmGrp | |
2 | vg | . . . . . . 7 setvar 𝑔 | |
3 | 2 | cv 1538 | . . . . . 6 class 𝑔 |
4 | cnm 23741 | . . . . . 6 class norm | |
5 | 3, 4 | cfv 6437 | . . . . 5 class (norm‘𝑔) |
6 | csg 18588 | . . . . . 6 class -g | |
7 | 3, 6 | cfv 6437 | . . . . 5 class (-g‘𝑔) |
8 | 5, 7 | ccom 5594 | . . . 4 class ((norm‘𝑔) ∘ (-g‘𝑔)) |
9 | cds 16980 | . . . . 5 class dist | |
10 | 3, 9 | cfv 6437 | . . . 4 class (dist‘𝑔) |
11 | 8, 10 | wss 3888 | . . 3 wff ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔) |
12 | cgrp 18586 | . . . 4 class Grp | |
13 | cms 23480 | . . . 4 class MetSp | |
14 | 12, 13 | cin 3887 | . . 3 class (Grp ∩ MetSp) |
15 | 11, 2, 14 | crab 3069 | . 2 class {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} |
16 | 1, 15 | wceq 1539 | 1 wff NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g‘𝑔)) ⊆ (dist‘𝑔)} |
Colors of variables: wff setvar class |
This definition is referenced by: isngp 23761 |
Copyright terms: Public domain | W3C validator |