MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nzr Structured version   Visualization version   GIF version

Definition df-nzr 20464
Description: A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
df-nzr NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}

Detailed syntax breakdown of Definition df-nzr
StepHypRef Expression
1 cnzr 20463 . 2 class NzRing
2 vr . . . . . 6 setvar 𝑟
32cv 1532 . . . . 5 class 𝑟
4 cur 20133 . . . . 5 class 1r
53, 4cfv 6549 . . . 4 class (1r𝑟)
6 c0g 17424 . . . . 5 class 0g
73, 6cfv 6549 . . . 4 class (0g𝑟)
85, 7wne 2929 . . 3 wff (1r𝑟) ≠ (0g𝑟)
9 crg 20185 . . 3 class Ring
108, 2, 9crab 3418 . 2 class {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
111, 10wceq 1533 1 wff NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  isnzr  20465  nzrring  20467
  Copyright terms: Public domain W3C validator