Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nzr | Structured version Visualization version GIF version |
Description: A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
df-nzr | ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnzr 20537 | . 2 class NzRing | |
2 | vr | . . . . . 6 setvar 𝑟 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑟 |
4 | cur 19746 | . . . . 5 class 1r | |
5 | 3, 4 | cfv 6437 | . . . 4 class (1r‘𝑟) |
6 | c0g 17159 | . . . . 5 class 0g | |
7 | 3, 6 | cfv 6437 | . . . 4 class (0g‘𝑟) |
8 | 5, 7 | wne 2944 | . . 3 wff (1r‘𝑟) ≠ (0g‘𝑟) |
9 | crg 19792 | . . 3 class Ring | |
10 | 8, 2, 9 | crab 3069 | . 2 class {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
11 | 1, 10 | wceq 1539 | 1 wff NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
Colors of variables: wff setvar class |
This definition is referenced by: isnzr 20539 |
Copyright terms: Public domain | W3C validator |