| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nzr | Structured version Visualization version GIF version | ||
| Description: A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-nzr | ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnzr 20512 | . 2 class NzRing | |
| 2 | vr | . . . . . 6 setvar 𝑟 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑟 |
| 4 | cur 20178 | . . . . 5 class 1r | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (1r‘𝑟) |
| 6 | c0g 17484 | . . . . 5 class 0g | |
| 7 | 3, 6 | cfv 6561 | . . . 4 class (0g‘𝑟) |
| 8 | 5, 7 | wne 2940 | . . 3 wff (1r‘𝑟) ≠ (0g‘𝑟) |
| 9 | crg 20230 | . . 3 class Ring | |
| 10 | 8, 2, 9 | crab 3436 | . 2 class {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
| 11 | 1, 10 | wceq 1540 | 1 wff NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isnzr 20514 nzrring 20516 |
| Copyright terms: Public domain | W3C validator |