Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20602 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2941 ‘cfv 6465 0gc0g 17220 1rcur 19805 Ringcrg 19851 NzRingcnzr 20600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 df-nzr 20601 |
This theorem is referenced by: opprnzr 20608 nzrunit 20610 domnring 20639 domnchr 20808 uvcf1 21071 lindfind2 21097 frlmisfrlm 21127 nminvr 23905 deg1pw 25357 ply1nz 25358 ply1remlem 25399 ply1rem 25400 facth1 25401 fta1glem1 25402 fta1glem2 25403 prmidl0 31731 krull 31748 zrhnm 32025 isdomn4 40380 uvcn0 40468 0prjspnlem 40663 mon1pid 41234 mon1psubm 41235 nzrneg1ne0 45679 islindeps2 46076 |
Copyright terms: Public domain | W3C validator |