| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20398 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4033 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3931 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 0gc0g 17343 1rcur 20066 Ringcrg 20118 NzRingcnzr 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-ss 3920 df-nzr 20398 |
| This theorem is referenced by: nzrunit 20409 lringring 20427 rrgnz 20589 domnring 20592 isdomn4 20601 domnchr 21439 uvcf1 21699 lindfind2 21725 frlmisfrlm 21755 nminvr 24555 deg1pw 26024 ply1nz 26025 mon1pid 26057 ply1remlem 26068 ply1rem 26069 facth1 26070 fta1glem1 26071 fta1glem2 26072 unitnz 33180 drngidl 33371 drngidlhash 33372 prmidl0 33388 drnglidl1ne0 33413 drngmxidlr 33416 krull 33417 qsdrngilem 33432 qsdrngi 33433 qsdrnglem2 33434 qsdrng 33435 ply1moneq 33523 deg1vr 33526 zrhnm 33940 abvexp 42515 uvcn0 42525 0prjspnlem 42606 mon1psubm 43182 nzrneg1ne0 48224 islindeps2 48478 |
| Copyright terms: Public domain | W3C validator |