![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nzr 20530 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
2 | 1 | ssrab3 4092 | . 2 ⊢ NzRing ⊆ Ring |
3 | 2 | sseli 3991 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 0gc0g 17486 1rcur 20199 Ringcrg 20251 NzRingcnzr 20529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-ss 3980 df-nzr 20530 |
This theorem is referenced by: nzrunit 20541 lringring 20559 rrgnz 20721 domnring 20724 isdomn4 20733 domnchr 21565 uvcf1 21830 lindfind2 21856 frlmisfrlm 21886 nminvr 24706 deg1pw 26175 ply1nz 26176 mon1pid 26208 ply1remlem 26219 ply1rem 26220 facth1 26221 fta1glem1 26222 fta1glem2 26223 unitnz 33229 drngidl 33441 drngidlhash 33442 prmidl0 33458 drnglidl1ne0 33483 drngmxidlr 33486 krull 33487 qsdrngilem 33502 qsdrngi 33503 qsdrnglem2 33504 qsdrng 33505 ply1moneq 33591 deg1vr 33594 zrhnm 33930 abvexp 42519 uvcn0 42529 0prjspnlem 42610 mon1psubm 43188 nzrneg1ne0 48074 islindeps2 48329 |
Copyright terms: Public domain | W3C validator |