| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20433 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4041 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3939 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 0gc0g 17378 1rcur 20101 Ringcrg 20153 NzRingcnzr 20432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-nzr 20433 |
| This theorem is referenced by: nzrunit 20444 lringring 20462 rrgnz 20624 domnring 20627 isdomn4 20636 domnchr 21474 uvcf1 21734 lindfind2 21760 frlmisfrlm 21790 nminvr 24590 deg1pw 26059 ply1nz 26060 mon1pid 26092 ply1remlem 26103 ply1rem 26104 facth1 26105 fta1glem1 26106 fta1glem2 26107 unitnz 33206 drngidl 33397 drngidlhash 33398 prmidl0 33414 drnglidl1ne0 33439 drngmxidlr 33442 krull 33443 qsdrngilem 33458 qsdrngi 33459 qsdrnglem2 33460 qsdrng 33461 ply1moneq 33548 deg1vr 33551 zrhnm 33950 abvexp 42513 uvcn0 42523 0prjspnlem 42604 mon1psubm 43181 nzrneg1ne0 48211 islindeps2 48465 |
| Copyright terms: Public domain | W3C validator |