Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20530 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 0gc0g 17150 1rcur 19737 Ringcrg 19783 NzRingcnzr 20528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-nzr 20529 |
This theorem is referenced by: opprnzr 20536 nzrunit 20538 domnring 20567 domnchr 20736 uvcf1 20999 lindfind2 21025 frlmisfrlm 21055 nminvr 23833 deg1pw 25285 ply1nz 25286 ply1remlem 25327 ply1rem 25328 facth1 25329 fta1glem1 25330 fta1glem2 25331 prmidl0 31626 krull 31643 zrhnm 31919 isdomn4 40172 uvcn0 40265 0prjspnlem 40460 mon1pid 41030 mon1psubm 41031 nzrneg1ne0 45427 islindeps2 45824 |
Copyright terms: Public domain | W3C validator |