![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nzr 20539 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
2 | 1 | ssrab3 4105 | . 2 ⊢ NzRing ⊆ Ring |
3 | 2 | sseli 4004 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 0gc0g 17499 1rcur 20208 Ringcrg 20260 NzRingcnzr 20538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-nzr 20539 |
This theorem is referenced by: nzrunit 20550 lringring 20568 rrgnz 20726 domnring 20729 isdomn4 20738 domnchr 21570 uvcf1 21835 lindfind2 21861 frlmisfrlm 21891 nminvr 24711 deg1pw 26180 ply1nz 26181 mon1pid 26213 ply1remlem 26224 ply1rem 26225 facth1 26226 fta1glem1 26227 fta1glem2 26228 unitnz 33219 drngidl 33426 drngidlhash 33427 prmidl0 33443 drnglidl1ne0 33468 drngmxidlr 33471 krull 33472 qsdrngilem 33487 qsdrngi 33488 qsdrnglem2 33489 qsdrng 33490 ply1moneq 33576 deg1vr 33579 zrhnm 33915 abvexp 42487 uvcn0 42497 0prjspnlem 42578 mon1psubm 43160 nzrneg1ne0 47953 islindeps2 48212 |
Copyright terms: Public domain | W3C validator |