| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20428 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4029 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3925 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 0gc0g 17343 1rcur 20099 Ringcrg 20151 NzRingcnzr 20427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-nzr 20428 |
| This theorem is referenced by: nzrunit 20439 lringring 20457 rrgnz 20619 domnring 20622 isdomn4 20631 domnchr 21469 uvcf1 21729 lindfind2 21755 frlmisfrlm 21785 nminvr 24584 deg1pw 26053 ply1nz 26054 mon1pid 26086 ply1remlem 26097 ply1rem 26098 facth1 26099 fta1glem1 26100 fta1glem2 26101 unitnz 33206 drngidl 33398 drngidlhash 33399 prmidl0 33415 drnglidl1ne0 33440 drngmxidlr 33443 krull 33444 qsdrngilem 33459 qsdrngi 33460 qsdrnglem2 33461 qsdrng 33462 ply1moneq 33550 deg1vr 33553 zrhnm 33980 abvexp 42624 uvcn0 42634 0prjspnlem 42715 mon1psubm 43291 nzrneg1ne0 48329 islindeps2 48583 |
| Copyright terms: Public domain | W3C validator |