Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version |
Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20443 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 0gc0g 17067 1rcur 19652 Ringcrg 19698 NzRingcnzr 20441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-nzr 20442 |
This theorem is referenced by: opprnzr 20449 nzrunit 20451 domnring 20480 domnchr 20648 uvcf1 20909 lindfind2 20935 frlmisfrlm 20965 nminvr 23739 deg1pw 25190 ply1nz 25191 ply1remlem 25232 ply1rem 25233 facth1 25234 fta1glem1 25235 fta1glem2 25236 prmidl0 31528 krull 31545 zrhnm 31819 isdomn4 40100 uvcn0 40190 0prjspnlem 40381 mon1pid 40946 mon1psubm 40947 nzrneg1ne0 45315 islindeps2 45712 |
Copyright terms: Public domain | W3C validator |