| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20473 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4057 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3954 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 0gc0g 17453 1rcur 20141 Ringcrg 20193 NzRingcnzr 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-ss 3943 df-nzr 20473 |
| This theorem is referenced by: nzrunit 20484 lringring 20502 rrgnz 20664 domnring 20667 isdomn4 20676 domnchr 21493 uvcf1 21752 lindfind2 21778 frlmisfrlm 21808 nminvr 24608 deg1pw 26078 ply1nz 26079 mon1pid 26111 ply1remlem 26122 ply1rem 26123 facth1 26124 fta1glem1 26125 fta1glem2 26126 unitnz 33234 drngidl 33448 drngidlhash 33449 prmidl0 33465 drnglidl1ne0 33490 drngmxidlr 33493 krull 33494 qsdrngilem 33509 qsdrngi 33510 qsdrnglem2 33511 qsdrng 33512 ply1moneq 33599 deg1vr 33602 zrhnm 33998 abvexp 42555 uvcn0 42565 0prjspnlem 42646 mon1psubm 43223 nzrneg1ne0 48205 islindeps2 48459 |
| Copyright terms: Public domain | W3C validator |