| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20422 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4045 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3942 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 0gc0g 17402 1rcur 20090 Ringcrg 20142 NzRingcnzr 20421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-nzr 20422 |
| This theorem is referenced by: nzrunit 20433 lringring 20451 rrgnz 20613 domnring 20616 isdomn4 20625 domnchr 21442 uvcf1 21701 lindfind2 21727 frlmisfrlm 21757 nminvr 24557 deg1pw 26026 ply1nz 26027 mon1pid 26059 ply1remlem 26070 ply1rem 26071 facth1 26072 fta1glem1 26073 fta1glem2 26074 unitnz 33190 drngidl 33404 drngidlhash 33405 prmidl0 33421 drnglidl1ne0 33446 drngmxidlr 33449 krull 33450 qsdrngilem 33465 qsdrngi 33466 qsdrnglem2 33467 qsdrng 33468 ply1moneq 33555 deg1vr 33558 zrhnm 33957 abvexp 42520 uvcn0 42530 0prjspnlem 42611 mon1psubm 43188 nzrneg1ne0 48218 islindeps2 48472 |
| Copyright terms: Public domain | W3C validator |