| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nzrring | Structured version Visualization version GIF version | ||
| Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| nzrring | ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nzr 20429 | . . 3 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 2 | 1 | ssrab3 4048 | . 2 ⊢ NzRing ⊆ Ring |
| 3 | 2 | sseli 3945 | 1 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 0gc0g 17409 1rcur 20097 Ringcrg 20149 NzRingcnzr 20428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-nzr 20429 |
| This theorem is referenced by: nzrunit 20440 lringring 20458 rrgnz 20620 domnring 20623 isdomn4 20632 domnchr 21449 uvcf1 21708 lindfind2 21734 frlmisfrlm 21764 nminvr 24564 deg1pw 26033 ply1nz 26034 mon1pid 26066 ply1remlem 26077 ply1rem 26078 facth1 26079 fta1glem1 26080 fta1glem2 26081 unitnz 33197 drngidl 33411 drngidlhash 33412 prmidl0 33428 drnglidl1ne0 33453 drngmxidlr 33456 krull 33457 qsdrngilem 33472 qsdrngi 33473 qsdrnglem2 33474 qsdrng 33475 ply1moneq 33562 deg1vr 33565 zrhnm 33964 abvexp 42527 uvcn0 42537 0prjspnlem 42618 mon1psubm 43195 nzrneg1ne0 48222 islindeps2 48476 |
| Copyright terms: Public domain | W3C validator |