MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr Structured version   Visualization version   GIF version

Theorem isnzr 20460
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
isnzr (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))

Proof of Theorem isnzr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6902 . . . 4 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
2 isnzr.o . . . 4 1 = (1r𝑅)
31, 2eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (1r𝑟) = 1 )
4 fveq2 6902 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5 isnzr.z . . . 4 0 = (0g𝑅)
64, 5eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (0g𝑟) = 0 )
73, 6neeq12d 2999 . 2 (𝑟 = 𝑅 → ((1r𝑟) ≠ (0g𝑟) ↔ 10 ))
8 df-nzr 20459 . 2 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
97, 8elrab2 3687 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  cfv 6553  0gc0g 17428  1rcur 20128  Ringcrg 20180  NzRingcnzr 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-nzr 20459
This theorem is referenced by:  nzrnz  20461  nzrringOLD  20463  isnzr2  20464  isnzr2hash  20465  ringelnzr  20467  subrgnzr  20540  drngnzr  20651  isdomn3  21255  zringnzr  21393  chrnzr  21467  nrginvrcn  24629  ply1nzb  26078  drngidlhash  33175  qsnzr  33196  mxidlnzr  33205  zrhnm  33603
  Copyright terms: Public domain W3C validator