| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr | Structured version Visualization version GIF version | ||
| Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 4 | fveq2 6826 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2782 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 7 | 3, 6 | neeq12d 2986 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
| 8 | df-nzr 20417 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 9 | 7, 8 | elrab2 3653 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 0gc0g 17362 1rcur 20085 Ringcrg 20137 NzRingcnzr 20416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-nzr 20417 |
| This theorem is referenced by: nzrnz 20419 nzrringOLD 20421 isnzr2 20422 isnzr2hash 20423 nzrpropd 20424 opprnzrb 20425 ringelnzr 20427 subrgnzr 20498 isdomn3 20619 drngnzr 20652 zringnzr 21386 chrnzr 21456 nrginvrcn 24597 ply1nzb 26045 drngidlhash 33390 qsnzr 33411 mxidlnzr 33423 zrhnm 33953 |
| Copyright terms: Public domain | W3C validator |