MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr Structured version   Visualization version   GIF version

Theorem isnzr 20423
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
isnzr (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))

Proof of Theorem isnzr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
2 isnzr.o . . . 4 1 = (1r𝑅)
31, 2eqtr4di 2782 . . 3 (𝑟 = 𝑅 → (1r𝑟) = 1 )
4 fveq2 6858 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5 isnzr.z . . . 4 0 = (0g𝑅)
64, 5eqtr4di 2782 . . 3 (𝑟 = 𝑅 → (0g𝑟) = 0 )
73, 6neeq12d 2986 . 2 (𝑟 = 𝑅 → ((1r𝑟) ≠ (0g𝑟) ↔ 10 ))
8 df-nzr 20422 . 2 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
97, 8elrab2 3662 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6511  0gc0g 17402  1rcur 20090  Ringcrg 20142  NzRingcnzr 20421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-nzr 20422
This theorem is referenced by:  nzrnz  20424  nzrringOLD  20426  isnzr2  20427  isnzr2hash  20428  nzrpropd  20429  opprnzrb  20430  ringelnzr  20432  subrgnzr  20503  isdomn3  20624  drngnzr  20657  zringnzr  21370  chrnzr  21440  nrginvrcn  24580  ply1nzb  26028  drngidlhash  33405  qsnzr  33426  mxidlnzr  33438  zrhnm  33957
  Copyright terms: Public domain W3C validator