MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr Structured version   Visualization version   GIF version

Theorem isnzr 20438
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
isnzr (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))

Proof of Theorem isnzr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6831 . . . 4 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
2 isnzr.o . . . 4 1 = (1r𝑅)
31, 2eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (1r𝑟) = 1 )
4 fveq2 6831 . . . 4 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
5 isnzr.z . . . 4 0 = (0g𝑅)
64, 5eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (0g𝑟) = 0 )
73, 6neeq12d 2990 . 2 (𝑟 = 𝑅 → ((1r𝑟) ≠ (0g𝑟) ↔ 10 ))
8 df-nzr 20437 . 2 NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
97, 8elrab2 3646 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  cfv 6489  0gc0g 17350  1rcur 20107  Ringcrg 20159  NzRingcnzr 20436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-nzr 20437
This theorem is referenced by:  nzrnz  20439  nzrringOLD  20441  isnzr2  20442  isnzr2hash  20443  nzrpropd  20444  opprnzrb  20445  ringelnzr  20447  subrgnzr  20518  isdomn3  20639  drngnzr  20672  zringnzr  21406  chrnzr  21476  nrginvrcn  24627  ply1nzb  26075  drngidlhash  33443  qsnzr  33464  mxidlnzr  33476  zrhnm  34052
  Copyright terms: Public domain W3C validator