| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr | Structured version Visualization version GIF version | ||
| Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2782 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 4 | fveq2 6858 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2782 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 7 | 3, 6 | neeq12d 2986 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
| 8 | df-nzr 20422 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 9 | 7, 8 | elrab2 3662 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 0gc0g 17402 1rcur 20090 Ringcrg 20142 NzRingcnzr 20421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-nzr 20422 |
| This theorem is referenced by: nzrnz 20424 nzrringOLD 20426 isnzr2 20427 isnzr2hash 20428 nzrpropd 20429 opprnzrb 20430 ringelnzr 20432 subrgnzr 20503 isdomn3 20624 drngnzr 20657 zringnzr 21370 chrnzr 21440 nrginvrcn 24580 ply1nzb 26028 drngidlhash 33405 qsnzr 33426 mxidlnzr 33438 zrhnm 33957 |
| Copyright terms: Public domain | W3C validator |