Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnzr | Structured version Visualization version GIF version |
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
4 | fveq2 6774 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | eqtr4di 2796 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
7 | 3, 6 | neeq12d 3005 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
8 | df-nzr 20529 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
9 | 7, 8 | elrab2 3627 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 0gc0g 17150 1rcur 19737 Ringcrg 19783 NzRingcnzr 20528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-nzr 20529 |
This theorem is referenced by: nzrnz 20531 nzrring 20532 drngnzr 20533 isnzr2 20534 isnzr2hash 20535 ringelnzr 20537 subrgnzr 20539 zringnzr 20682 chrnzr 20734 nrginvrcn 23856 ply1nzb 25287 mxidlnzr 31639 zrhnm 31919 isdomn3 41029 |
Copyright terms: Public domain | W3C validator |