| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr | Structured version Visualization version GIF version | ||
| Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr.o | ⊢ 1 = (1r‘𝑅) |
| isnzr.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
| 2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 4 | fveq2 6861 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2783 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 7 | 3, 6 | neeq12d 2987 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
| 8 | df-nzr 20429 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
| 9 | 7, 8 | elrab2 3665 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 0gc0g 17409 1rcur 20097 Ringcrg 20149 NzRingcnzr 20428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-nzr 20429 |
| This theorem is referenced by: nzrnz 20431 nzrringOLD 20433 isnzr2 20434 isnzr2hash 20435 nzrpropd 20436 opprnzrb 20437 ringelnzr 20439 subrgnzr 20510 isdomn3 20631 drngnzr 20664 zringnzr 21377 chrnzr 21447 nrginvrcn 24587 ply1nzb 26035 drngidlhash 33412 qsnzr 33433 mxidlnzr 33445 zrhnm 33964 |
| Copyright terms: Public domain | W3C validator |