![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnzr | Structured version Visualization version GIF version |
Description: Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr.o | ⊢ 1 = (1r‘𝑅) |
isnzr.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isnzr | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . 4 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) | |
2 | isnzr.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | eqtr4di 2793 | . . 3 ⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
4 | fveq2 6907 | . . . 4 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
5 | isnzr.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | eqtr4di 2793 | . . 3 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
7 | 3, 6 | neeq12d 3000 | . 2 ⊢ (𝑟 = 𝑅 → ((1r‘𝑟) ≠ (0g‘𝑟) ↔ 1 ≠ 0 )) |
8 | df-nzr 20530 | . 2 ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | |
9 | 7, 8 | elrab2 3698 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 0gc0g 17486 1rcur 20199 Ringcrg 20251 NzRingcnzr 20529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-nzr 20530 |
This theorem is referenced by: nzrnz 20532 nzrringOLD 20534 isnzr2 20535 isnzr2hash 20536 nzrpropd 20537 opprnzrb 20538 ringelnzr 20540 subrgnzr 20611 isdomn3 20732 drngnzr 20765 zringnzr 21489 chrnzr 21563 nrginvrcn 24729 ply1nzb 26177 drngidlhash 33442 qsnzr 33463 mxidlnzr 33475 zrhnm 33930 |
Copyright terms: Public domain | W3C validator |