Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ofs Structured version   Visualization version   GIF version

Definition df-ofs 34212
Description: The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 27209). See brofs 34234 and 5segofs 34235 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.)
Assertion
Ref Expression
df-ofs OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧,𝑤,𝑝,𝑞,𝑛

Detailed syntax breakdown of Definition df-ofs
StepHypRef Expression
1 cofs 34211 . 2 class OuterFiveSeg
2 vp . . . . . . . . . . . . . . 15 setvar 𝑝
32cv 1538 . . . . . . . . . . . . . 14 class 𝑝
4 va . . . . . . . . . . . . . . . . 17 setvar 𝑎
54cv 1538 . . . . . . . . . . . . . . . 16 class 𝑎
6 vb . . . . . . . . . . . . . . . . 17 setvar 𝑏
76cv 1538 . . . . . . . . . . . . . . . 16 class 𝑏
85, 7cop 4564 . . . . . . . . . . . . . . 15 class 𝑎, 𝑏
9 vc . . . . . . . . . . . . . . . . 17 setvar 𝑐
109cv 1538 . . . . . . . . . . . . . . . 16 class 𝑐
11 vd . . . . . . . . . . . . . . . . 17 setvar 𝑑
1211cv 1538 . . . . . . . . . . . . . . . 16 class 𝑑
1310, 12cop 4564 . . . . . . . . . . . . . . 15 class 𝑐, 𝑑
148, 13cop 4564 . . . . . . . . . . . . . 14 class ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩
153, 14wceq 1539 . . . . . . . . . . . . 13 wff 𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩
16 vq . . . . . . . . . . . . . . 15 setvar 𝑞
1716cv 1538 . . . . . . . . . . . . . 14 class 𝑞
18 vx . . . . . . . . . . . . . . . . 17 setvar 𝑥
1918cv 1538 . . . . . . . . . . . . . . . 16 class 𝑥
20 vy . . . . . . . . . . . . . . . . 17 setvar 𝑦
2120cv 1538 . . . . . . . . . . . . . . . 16 class 𝑦
2219, 21cop 4564 . . . . . . . . . . . . . . 15 class 𝑥, 𝑦
23 vz . . . . . . . . . . . . . . . . 17 setvar 𝑧
2423cv 1538 . . . . . . . . . . . . . . . 16 class 𝑧
25 vw . . . . . . . . . . . . . . . . 17 setvar 𝑤
2625cv 1538 . . . . . . . . . . . . . . . 16 class 𝑤
2724, 26cop 4564 . . . . . . . . . . . . . . 15 class 𝑧, 𝑤
2822, 27cop 4564 . . . . . . . . . . . . . 14 class ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩
2917, 28wceq 1539 . . . . . . . . . . . . 13 wff 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩
305, 10cop 4564 . . . . . . . . . . . . . . . 16 class 𝑎, 𝑐
31 cbtwn 27160 . . . . . . . . . . . . . . . 16 class Btwn
327, 30, 31wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑏 Btwn ⟨𝑎, 𝑐
3319, 24cop 4564 . . . . . . . . . . . . . . . 16 class 𝑥, 𝑧
3421, 33, 31wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑦 Btwn ⟨𝑥, 𝑧
3532, 34wa 395 . . . . . . . . . . . . . 14 wff (𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩)
36 ccgr 27161 . . . . . . . . . . . . . . . 16 class Cgr
378, 22, 36wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦
387, 10cop 4564 . . . . . . . . . . . . . . . 16 class 𝑏, 𝑐
3921, 24cop 4564 . . . . . . . . . . . . . . . 16 class 𝑦, 𝑧
4038, 39, 36wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧
4137, 40wa 395 . . . . . . . . . . . . . 14 wff (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩)
425, 12cop 4564 . . . . . . . . . . . . . . . 16 class 𝑎, 𝑑
4319, 26cop 4564 . . . . . . . . . . . . . . . 16 class 𝑥, 𝑤
4442, 43, 36wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤
457, 12cop 4564 . . . . . . . . . . . . . . . 16 class 𝑏, 𝑑
4621, 26cop 4564 . . . . . . . . . . . . . . . 16 class 𝑦, 𝑤
4745, 46, 36wbr 5070 . . . . . . . . . . . . . . 15 wff 𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤
4844, 47wa 395 . . . . . . . . . . . . . 14 wff (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)
4935, 41, 48w3a 1085 . . . . . . . . . . . . 13 wff ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩))
5015, 29, 49w3a 1085 . . . . . . . . . . . 12 wff (𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
51 vn . . . . . . . . . . . . . 14 setvar 𝑛
5251cv 1538 . . . . . . . . . . . . 13 class 𝑛
53 cee 27159 . . . . . . . . . . . . 13 class 𝔼
5452, 53cfv 6418 . . . . . . . . . . . 12 class (𝔼‘𝑛)
5550, 25, 54wrex 3064 . . . . . . . . . . 11 wff 𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5655, 23, 54wrex 3064 . . . . . . . . . 10 wff 𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5756, 20, 54wrex 3064 . . . . . . . . 9 wff 𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5857, 18, 54wrex 3064 . . . . . . . 8 wff 𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
5958, 11, 54wrex 3064 . . . . . . 7 wff 𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
6059, 9, 54wrex 3064 . . . . . 6 wff 𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
6160, 6, 54wrex 3064 . . . . 5 wff 𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
6261, 4, 54wrex 3064 . . . 4 wff 𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
63 cn 11903 . . . 4 class
6462, 51, 63wrex 3064 . . 3 wff 𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))
6564, 2, 16copab 5132 . 2 class {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
661, 65wceq 1539 1 wff OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
Colors of variables: wff setvar class
This definition is referenced by:  brofs  34234
  Copyright terms: Public domain W3C validator