Home | Metamath
Proof Explorer Theorem List (p. 355 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29266) |
Hilbert Space Explorer
(29267-30789) |
Users' Mathboxes
(30790-46477) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-bj-arg 35401 | Define the argument of a nonzero extended complex number. By convention, it has values in (-π, π]. Another convention chooses values in [0, 2π) but the present convention simplifies formulas giving the argument as an arctangent. (Contributed by BJ, 22-Jun-2019.) The "else" case of the second conditional operator, corresponding to infinite extended complex numbers other than -∞, gives a definition depending on the specific definition chosen for these numbers (df-bj-inftyexpitau 35356), and therefore should not be relied upon. (New usage is discouraged.) |
⊢ Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦ if(𝑥 ∈ ℂ, (ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π, (((1st ‘𝑥) / (2 · π)) − π)))) | ||
Syntax | cmulc 35402 | Syntax for the multiplication of extended complex numbers. |
class ·ℂ̅ | ||
Definition | df-bj-mulc 35403 |
Define the multiplication of extended complex numbers and of the complex
projective line (Riemann sphere). In our convention, a product with 0 is
0, even when the other factor is infinite. An alternate convention leaves
products of 0 with an infinite number undefined since the multiplication
is not continuous at these points. Note that our convention entails
(0 / 0) = 0 (given df-bj-invc 35405).
Note that this definition uses · and Arg and /. Indeed, it would be contrived to bypass ordinary complex multiplication, and the present two-step definition looks like a good compromise. (Contributed by BJ, 22-Jun-2019.) |
⊢ ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)), (+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅ (Arg‘(2nd ‘𝑥))) / τ)))))) | ||
Syntax | cinvc 35404 | Syntax for the inverse of nonzero extended complex numbers. |
class -1ℂ̅ | ||
Definition | df-bj-invc 35405* | Define inversion, which maps a nonzero extended complex number or element of the complex projective line (Riemann sphere) to its inverse. Beware of the overloading: the equality (-1ℂ̅‘0) = ∞ is to be understood in the complex projective line, but 0 as an extended complex number does not have an inverse, which we can state as (-1ℂ̅‘0) ∉ ℂ̅. Note that this definition relies on df-bj-mulc 35403, which does not bypass ordinary complex multiplication, but defines extended complex multiplication on top of it. Therefore, we could have used directly / instead of (℩... ·ℂ̅ ...). (Contributed by BJ, 22-Jun-2019.) |
⊢ -1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0))) | ||
Syntax | ciomnn 35406 | Syntax for the canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}). |
class iω↪ℕ | ||
Definition | df-bj-iomnn 35407* |
Definition of the canonical bijection from (ω ∪
{ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 35354 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 35416 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) | ||
Theorem | bj-imafv 35408 | If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
Theorem | bj-funun 35409 | Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.) |
⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) & ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
Theorem | bj-fununsn1 35410 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
Theorem | bj-fununsn2 35411 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) | ||
Theorem | bj-fvsnun1 35412 | The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) ⇒ ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) | ||
Theorem | bj-fvsnun2 35413 | The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7048. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) | ||
Theorem | bj-fvmptunsn1 35414* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) | ||
Theorem | bj-fvmptunsn2 35415* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) | ||
Theorem | bj-iomnnom 35416 | The canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}) maps ω to +∞. (Contributed by BJ, 18-Feb-2023.) |
⊢ (iω↪ℕ‘ω) = +∞ | ||
Syntax | cnnbar 35417 | Syntax for the extended natural numbers. |
class ℕ̅ | ||
Definition | df-bj-nnbar 35418 | Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023.) |
⊢ ℕ̅ = (ℕ0 ∪ {+∞}) | ||
Syntax | czzbar 35419 | Syntax for the extended integers. |
class ℤ̅ | ||
Definition | df-bj-zzbar 35420 | Definition of the extended integers. (Contributed by BJ, 28-Jul-2023.) |
⊢ ℤ̅ = (ℤ ∪ {-∞, +∞}) | ||
Syntax | czzhat 35421 | Syntax for the one-point-compactified integers. |
class ℤ̂ | ||
Definition | df-bj-zzhat 35422 | Definition of the one-point-compactified. (Contributed by BJ, 28-Jul-2023.) |
⊢ ℤ̂ = (ℤ ∪ {∞}) | ||
Syntax | cdivc 35423 | Syntax for the divisibility relation. |
class ∥ℂ | ||
Definition | df-bj-divc 35424* |
Definition of the divisibility relation (compare df-dvds 15952).
Since 0 is absorbing, ⊢ (𝐴 ∈ (ℂ̅ ∪ ℂ̂) → (𝐴 ∥ℂ 0)) and ⊢ ((0 ∥ℂ 𝐴) ↔ 𝐴 = 0). (Contributed by BJ, 28-Jul-2023.) |
⊢ ∥ℂ = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧ ∃𝑛 ∈ (ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)} | ||
See ccmn 19374 and subsequents. The first few statements of this subsection can be put very early after ccmn 19374. Proposal: in the main part, make separate subsections of commutative monoids and abelian groups. Relabel cabl 19375 to "cabl" or, preferably, other labels containing "abl" to "abel", for consistency. | ||
Theorem | bj-smgrpssmgm 35425 | Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
⊢ Smgrp ⊆ Mgm | ||
Theorem | bj-smgrpssmgmel 35426 | Semigroups are magmas (elemental version). (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | ||
Theorem | bj-mndsssmgrp 35427 | Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
⊢ Mnd ⊆ Smgrp | ||
Theorem | bj-mndsssmgrpel 35428 | Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | ||
Theorem | bj-cmnssmnd 35429 | Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ CMnd ⊆ Mnd | ||
Theorem | bj-cmnssmndel 35430 | Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19390, which relies on iscmn 19382. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) | ||
Theorem | bj-grpssmnd 35431 | Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
⊢ Grp ⊆ Mnd | ||
Theorem | bj-grpssmndel 35432 | Groups are monoids (elemental version). Shorter proof of grpmnd 18572. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ Grp → 𝐴 ∈ Mnd) | ||
Theorem | bj-ablssgrp 35433 | Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ Abel ⊆ Grp | ||
Theorem | bj-ablssgrpel 35434 | Abelian groups are groups (elemental version). This is a shorter proof of ablgrp 19379. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ Abel → 𝐴 ∈ Grp) | ||
Theorem | bj-ablsscmn 35435 | Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ Abel ⊆ CMnd | ||
Theorem | bj-ablsscmnel 35436 | Abelian groups are commutative monoids (elemental version). This is a shorter proof of ablcmn 19381. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ Abel → 𝐴 ∈ CMnd) | ||
Theorem | bj-modssabl 35437 | (The additive groups of) modules are abelian groups. (The elemental version is lmodabl 20158; see also lmodgrp 20118 and lmodcmn 20159.) (Contributed by BJ, 9-Jun-2019.) |
⊢ LMod ⊆ Abel | ||
Theorem | bj-vecssmod 35438 | Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ LVec ⊆ LMod | ||
Theorem | bj-vecssmodel 35439 | Vector spaces are modules (elemental version). This is a shorter proof of lveclmod 20356. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ LVec → 𝐴 ∈ LMod) | ||
UPDATE: a similar summation is already defined as df-gsum 17141 (although it mixes finite and infinite sums, which makes it harder to understand). | ||
Syntax | cfinsum 35440 | Syntax for the class "finite summation in monoids". |
class FinSum | ||
Definition | df-bj-finsum 35441* | Finite summation in commutative monoids. This finite summation function can be extended to pairs 〈𝑦, 𝑧〉 where 𝑦 is a left-unital magma and 𝑧 is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.) |
⊢ FinSum = (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd ‘𝑥) ∧ 𝑠 = (seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) | ||
Theorem | bj-finsumval0 35442* | Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.) |
⊢ (𝜑 → 𝐴 ∈ CMnd) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | ||
A few basic theorems to start affine, Euclidean, and Cartesian geometry. The first step is to define real vector spaces, then barycentric coordinates and convex hulls. | ||
In this section, we introduce real vector spaces. | ||
Theorem | bj-fvimacnv0 35443 | Variant of fvimacnv 6923 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 44568. (Contributed by BJ, 7-Jan-2024.) |
⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | ||
Theorem | bj-isvec 35444 | The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) ⇒ ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) | ||
Theorem | bj-fldssdrng 35445 | Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
⊢ Field ⊆ DivRing | ||
Theorem | bj-flddrng 35446 | Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.) |
⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) | ||
Theorem | bj-rrdrg 35447 | The field of real numbers is a division ring. (Contributed by BJ, 6-Jan-2024.) |
⊢ ℝfld ∈ DivRing | ||
Theorem | bj-isclm 35448 | The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐹)) ⇒ ⊢ (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))) | ||
Syntax | crrvec 35449 | Syntax for the class of real vector spaces. |
class ℝ-Vec | ||
Definition | df-bj-rvec 35450 | Definition of the class of real vector spaces. The previous definition, ⊢ ℝ-Vec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) = ℝfld}, can be recovered using bj-isrvec 35451. The present one is preferred since it does not use any dummy variable. That ℝ-Vec could be defined with LVec in place of LMod is a consequence of bj-isrvec2 35457. (Contributed by BJ, 9-Jun-2019.) |
⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | ||
Theorem | bj-isrvec 35451 | The predicate "is a real vector space". Using df-sca 16966 instead of scaid 17013 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 16966. (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) | ||
Theorem | bj-rvecmod 35452 | Real vector spaces are modules (elemental version). (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod) | ||
Theorem | bj-rvecssmod 35453 | Real vector spaces are modules. (Contributed by BJ, 6-Jan-2024.) |
⊢ ℝ-Vec ⊆ LMod | ||
Theorem | bj-rvecrr 35454 | The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld) | ||
Theorem | bj-isrvecd 35455 | The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) ⇒ ⊢ (𝜑 → (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝐾 = ℝfld))) | ||
Theorem | bj-rvecvec 35456 | Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec) | ||
Theorem | bj-isrvec2 35457 | The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) ⇒ ⊢ (𝜑 → (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LVec ∧ 𝐾 = ℝfld))) | ||
Theorem | bj-rvecssvec 35458 | Real vector spaces are vector spaces. (Contributed by BJ, 6-Jan-2024.) |
⊢ ℝ-Vec ⊆ LVec | ||
Theorem | bj-rveccmod 35459 | Real vector spaces are subcomplex modules (elemental version). (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂMod) | ||
Theorem | bj-rvecsscmod 35460 | Real vector spaces are subcomplex modules. (Contributed by BJ, 6-Jan-2024.) |
⊢ ℝ-Vec ⊆ ℂMod | ||
Theorem | bj-rvecsscvec 35461 | Real vector spaces are subcomplex vector spaces. (Contributed by BJ, 6-Jan-2024.) |
⊢ ℝ-Vec ⊆ ℂVec | ||
Theorem | bj-rveccvec 35462 | Real vector spaces are subcomplex vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024.) |
⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂVec) | ||
Theorem | bj-rvecssabl 35463 | (The additive groups of) real vector spaces are commutative groups. (Contributed by BJ, 9-Jun-2019.) |
⊢ ℝ-Vec ⊆ Abel | ||
Theorem | bj-rvecabl 35464 | (The additive groups of) real vector spaces are commutative groups (elemental version). (Contributed by BJ, 9-Jun-2019.) |
⊢ (𝐴 ∈ ℝ-Vec → 𝐴 ∈ Abel) | ||
Some lemmas to ease algebraic manipulations. | ||
Theorem | bj-subcom 35465 | A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − (𝐵 · 𝐴)) = 0) | ||
Theorem | bj-lineqi 35466 | Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝐵) = 𝑌) ⇒ ⊢ (𝜑 → 𝑋 = ((𝑌 − 𝐵) / 𝐴)) | ||
Lemmas about barycentric coordinates. For the moment, this is limited to the one-dimensional case (complex line), where existence and uniqueness of barycentric coordinates are proved by bj-bary1 35469 (which computes them). It would be nice to prove the two-dimensional case (is it easier to use ad hoc computations, or Cramer formulas?), in order to do some planar geometry. | ||
Theorem | bj-bary1lem 35467 | Lemma for bj-bary1 35469: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = ((((𝐵 − 𝑋) / (𝐵 − 𝐴)) · 𝐴) + (((𝑋 − 𝐴) / (𝐵 − 𝐴)) · 𝐵))) | ||
Theorem | bj-bary1lem1 35468 | Lemma for bj-bary1: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋 − 𝐴) / (𝐵 − 𝐴)))) | ||
Theorem | bj-bary1 35469 | Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵 − 𝑋) / (𝐵 − 𝐴)) ∧ 𝑇 = ((𝑋 − 𝐴) / (𝐵 − 𝐴))))) | ||
Syntax | cend 35470 | Token for the monoid of endomorphisms. |
class End | ||
Definition | df-bj-end 35471* | The monoid of endomorphisms on an object of a category. (Contributed by BJ, 4-Apr-2024.) |
⊢ End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {〈(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)〉, 〈(+g‘ndx), (〈𝑥, 𝑥〉(comp‘𝑐)𝑥)〉})) | ||
Theorem | bj-endval 35472 | Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) = {〈(Base‘ndx), (𝑋(Hom ‘𝐶)𝑋)〉, 〈(+g‘ndx), (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)〉}) | ||
Theorem | bj-endbase 35473 | Base set of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (Base‘((End ‘𝐶)‘𝑋)) = (𝑋(Hom ‘𝐶)𝑋)) | ||
Theorem | bj-endcomp 35474 | Composition law of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (+g‘((End ‘𝐶)‘𝑋)) = (〈𝑋, 𝑋〉(comp‘𝐶)𝑋)) | ||
Theorem | bj-endmnd 35475 | The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → ((End ‘𝐶)‘𝑋) ∈ Mnd) | ||
Theorem | taupilem3 35476 | Lemma for tau-related theorems. (Contributed by Jim Kingdon, 16-Feb-2019.) |
⊢ (𝐴 ∈ (ℝ+ ∩ (◡cos “ {1})) ↔ (𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1)) | ||
Theorem | taupilemrplb 35477* | A set of positive reals has (in the reals) a lower bound. (Contributed by Jim Kingdon, 19-Feb-2019.) |
⊢ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (ℝ+ ∩ 𝐴)𝑥 ≤ 𝑦 | ||
Theorem | taupilem1 35478 | Lemma for taupi 35480. A positive real whose cosine is one is at least 2 · π. (Contributed by Jim Kingdon, 19-Feb-2019.) |
⊢ ((𝐴 ∈ ℝ+ ∧ (cos‘𝐴) = 1) → (2 · π) ≤ 𝐴) | ||
Theorem | taupilem2 35479 | Lemma for taupi 35480. The smallest positive real whose cosine is one is at most 2 · π. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
⊢ τ ≤ (2 · π) | ||
Theorem | taupi 35480 | Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
⊢ τ = (2 · π) | ||
Theorem | dfgcd3 35481* | Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (℩𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)))) | ||
Theorem | irrdifflemf 35482 | Lemma for irrdiff 35483. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℚ) & ⊢ (𝜑 → 𝑄 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) ≠ (abs‘(𝐴 − 𝑅))) | ||
Theorem | irrdiff 35483* | The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024.) |
⊢ (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞 ≠ 𝑟 → (abs‘(𝐴 − 𝑞)) ≠ (abs‘(𝐴 − 𝑟))))) | ||
Theorem | iccioo01 35484 | The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024.) |
⊢ (0[,]1) ≈ (0(,)1) | ||
Theorem | csbrecsg 35485 | Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) | ||
Theorem | csbrdgg 35486 | Move class substitution in and out of the recursive function generator. (Contributed by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌rec(𝐹, 𝐼) = rec(⦋𝐴 / 𝑥⦌𝐹, ⦋𝐴 / 𝑥⦌𝐼)) | ||
Theorem | csboprabg 35487* | Move class substitution in and out of class abstractions of nested ordered pairs. (Contributed by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈〈𝑦, 𝑧〉, 𝑑〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑑〉 ∣ [𝐴 / 𝑥]𝜑}) | ||
Theorem | csbmpo123 35488* | Move class substitution in and out of maps-to notation for operations. (Contributed by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐷) = (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝑌, 𝑧 ∈ ⦋𝐴 / 𝑥⦌𝑍 ↦ ⦋𝐴 / 𝑥⦌𝐷)) | ||
Theorem | con1bii2 35489 | A contraposition inference. (Contributed by ML, 18-Oct-2020.) |
⊢ (¬ 𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ¬ 𝜓) | ||
Theorem | con2bii2 35490 | A contraposition inference. (Contributed by ML, 18-Oct-2020.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (¬ 𝜑 ↔ 𝜓) | ||
Theorem | vtoclefex 35491* | Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝐴 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜑) | ||
Theorem | rnmptsn 35492* | The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.) |
⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | ||
Theorem | f1omptsnlem 35493* | This is the core of the proof of f1omptsn 35494, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ 𝐹:𝐴–1-1-onto→𝑅 | ||
Theorem | f1omptsn 35494* | A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ 𝐹:𝐴–1-1-onto→𝑅 | ||
Theorem | mptsnunlem 35495* | This is the core of the proof of mptsnun 35496, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) | ||
Theorem | mptsnun 35496* | A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) & ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) | ||
Theorem | dissneqlem 35497* | This is the core of the proof of dissneq 35498, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) | ||
Theorem | dissneq 35498* | Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} ⇒ ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) | ||
Theorem | exlimim 35499* | Closed form of exlimimd 35500. (Contributed by ML, 17-Jul-2020.) |
⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → 𝜓) | ||
Theorem | exlimimd 35500* | Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |