| Metamath
Proof Explorer Theorem List (p. 355 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elnanelprv 35401 | The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9522. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) | ||
| Theorem | prv0 35402 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
| Theorem | prv1n 35403 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
| Syntax | cgon 35404 | The Godel-set of negation. (Note that this is not a wff.) |
| class ¬𝑔𝑈 | ||
| Syntax | cgoa 35405 | The Godel-set of conjunction. |
| class ∧𝑔 | ||
| Syntax | cgoi 35406 | The Godel-set of implication. |
| class →𝑔 | ||
| Syntax | cgoo 35407 | The Godel-set of disjunction. |
| class ∨𝑔 | ||
| Syntax | cgob 35408 | The Godel-set of equivalence. |
| class ↔𝑔 | ||
| Syntax | cgoq 35409 | The Godel-set of equality. |
| class =𝑔 | ||
| Syntax | cgox 35410 | The Godel-set of existential quantification. (Note that this is not a wff.) |
| class ∃𝑔𝑁𝑈 | ||
| Definition | df-gonot 35411 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
| Definition | df-goan 35412* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
| Definition | df-goim 35413* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
| Definition | df-goor 35414* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
| Definition | df-gobi 35415* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
| Definition | df-goeq 35416* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2701 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
| Definition | df-goex 35417 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
| Syntax | cgze 35418 | The Axiom of Extensionality. |
| class AxExt | ||
| Syntax | cgzr 35419 | The Axiom Scheme of Replacement. |
| class AxRep | ||
| Syntax | cgzp 35420 | The Axiom of Power Sets. |
| class AxPow | ||
| Syntax | cgzu 35421 | The Axiom of Unions. |
| class AxUn | ||
| Syntax | cgzg 35422 | The Axiom of Regularity. |
| class AxReg | ||
| Syntax | cgzi 35423 | The Axiom of Infinity. |
| class AxInf | ||
| Syntax | cgzf 35424 | The set of models of ZF. |
| class ZF | ||
| Definition | df-gzext 35425 | The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxExt = (∀𝑔2o((2o∈𝑔∅) ↔𝑔 (2o∈𝑔1o)) →𝑔 (∅=𝑔1o)) | ||
| Definition | df-gzrep 35426 | The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔 ∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔 ∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) | ||
| Definition | df-gzpow 35427 | The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxPow = ∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o) ↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzun 35428 | The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxUn = ∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzreg 35429 | The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxReg = (∃𝑔1o(1o∈𝑔∅) →𝑔 ∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ¬𝑔(2o∈𝑔∅)))) | ||
| Definition | df-gzinf 35430 | The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) | ||
| Definition | df-gzf 35431* | Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))} | ||
This is a formalization of Appendix C of the Metamath book, which describes the mathematical representation of a formal system, of which set.mm (this file) is one. | ||
| Syntax | cmcn 35432 | The set of constants. |
| class mCN | ||
| Syntax | cmvar 35433 | The set of variables. |
| class mVR | ||
| Syntax | cmty 35434 | The type function. |
| class mType | ||
| Syntax | cmvt 35435 | The set of variable typecodes. |
| class mVT | ||
| Syntax | cmtc 35436 | The set of typecodes. |
| class mTC | ||
| Syntax | cmax 35437 | The set of axioms. |
| class mAx | ||
| Syntax | cmrex 35438 | The set of raw expressions. |
| class mREx | ||
| Syntax | cmex 35439 | The set of expressions. |
| class mEx | ||
| Syntax | cmdv 35440 | The set of distinct variables. |
| class mDV | ||
| Syntax | cmvrs 35441 | The variables in an expression. |
| class mVars | ||
| Syntax | cmrsub 35442 | The set of raw substitutions. |
| class mRSubst | ||
| Syntax | cmsub 35443 | The set of substitutions. |
| class mSubst | ||
| Syntax | cmvh 35444 | The set of variable hypotheses. |
| class mVH | ||
| Syntax | cmpst 35445 | The set of pre-statements. |
| class mPreSt | ||
| Syntax | cmsr 35446 | The reduct of a pre-statement. |
| class mStRed | ||
| Syntax | cmsta 35447 | The set of statements. |
| class mStat | ||
| Syntax | cmfs 35448 | The set of formal systems. |
| class mFS | ||
| Syntax | cmcls 35449 | The closure of a set of statements. |
| class mCls | ||
| Syntax | cmpps 35450 | The set of provable pre-statements. |
| class mPPSt | ||
| Syntax | cmthm 35451 | The set of theorems. |
| class mThm | ||
| Definition | df-mcn 35452 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCN = Slot 1 | ||
| Definition | df-mvar 35453 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVR = Slot 2 | ||
| Definition | df-mty 35454 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mType = Slot 3 | ||
| Definition | df-mtc 35455 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mTC = Slot 4 | ||
| Definition | df-mmax 35456 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mAx = Slot 5 | ||
| Definition | df-mvt 35457 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
| Definition | df-mrex 35458 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
| Definition | df-mex 35459 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
| Definition | df-mdv 35460 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
| Definition | df-mvrs 35461* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
| Definition | df-mrsub 35462* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Definition | df-msub 35463* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Definition | df-mvh 35464* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
| Definition | df-mpst 35465* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
| Definition | df-msr 35466* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
| Definition | df-msta 35467 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
| Definition | df-mfs 35468* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
| Definition | df-mcls 35469* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
| Definition | df-mpps 35470* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
| Definition | df-mthm 35471 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
| Theorem | mvtval 35472 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
| Theorem | mrexval 35473 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mexval 35474 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
| Theorem | mexval2 35475 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mdvval 35476 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
| Theorem | mvrsval 35477 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
| Theorem | mvrsfpw 35478 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
| Theorem | mrsubffval 35479* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Theorem | mrsubfval 35480* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) | ||
| Theorem | mrsubval 35481* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) | ||
| Theorem | mrsubcv 35482 | The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) | ||
| Theorem | mrsubvr 35483 | The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((𝑆‘𝐹)‘〈“𝑋”〉) = (𝐹‘𝑋)) | ||
| Theorem | mrsubff 35484 | A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubrn 35485 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
| Theorem | mrsubff1 35486 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubff1o 35487 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mrsub0 35488 | The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) | ||
| Theorem | mrsubf 35489 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) | ||
| Theorem | mrsubccat 35490 | Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) | ||
| Theorem | mrsubcn 35491 | A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) | ||
| Theorem | elmrsubrn 35492* | Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶 ∖ 𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 35521.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) | ||
| Theorem | mrsubco 35493 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
| Theorem | mrsubvrs 35494* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅) → (ran (𝐹‘𝑋) ∩ 𝑉) = ∪ 𝑥 ∈ (ran 𝑋 ∩ 𝑉)(ran (𝐹‘〈“𝑥”〉) ∩ 𝑉)) | ||
| Theorem | msubffval 35495* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Theorem | msubfval 35496* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) | ||
| Theorem | msubval 35497 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) | ||
| Theorem | msubrsub 35498 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) | ||
| Theorem | msubty 35499 | The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) | ||
| Theorem | elmsubrn 35500* | Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |