| Metamath
Proof Explorer Theorem List (p. 355 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-prv 35401* | Define the "proves" relation on a set. A wff is true in a model 𝑀 if for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the empty "model" 𝑀 = ∅, since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model. Statement prv0 35485 shows that our definition yields ∅⊧𝑈 for all formulas, though of course the formula ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | ||
| Theorem | goel 35402 | A "Godel-set of membership". The variables are identified by their indices (which are natural numbers), and the membership vi ∈ vj is coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) = 〈∅, 〈𝐼, 𝐽〉〉) | ||
| Theorem | goelel3xp 35403 | A "Godel-set of membership" is a member of a doubled Cartesian product. (Contributed by AV, 16-Sep-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼∈𝑔𝐽) ∈ (ω × (ω × ω))) | ||
| Theorem | goeleq12bg 35404 | Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023.) |
| ⊢ (((𝑀 ∈ ω ∧ 𝑁 ∈ ω) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω)) → ((𝐼∈𝑔𝐽) = (𝑀∈𝑔𝑁) ↔ (𝐼 = 𝑀 ∧ 𝐽 = 𝑁))) | ||
| Theorem | gonafv 35405 | The "Godel-set for the Sheffer stroke NAND" for two formulas 𝐴 and 𝐵. (Contributed by AV, 16-Oct-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴⊼𝑔𝐵) = 〈1o, 〈𝐴, 𝐵〉〉) | ||
| Theorem | goaleq12d 35406 | Equality of the "Godel-set of universal quantification". (Contributed by AV, 18-Sep-2023.) |
| ⊢ (𝜑 → 𝑀 = 𝑁) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∀𝑔𝑀𝐴 = ∀𝑔𝑁𝐵) | ||
| Theorem | gonanegoal 35407 | The Godel-set for the Sheffer stroke NAND is not equal to the Godel-set of universal quantification. (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 | ||
| Theorem | satf 35408* | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 14-Sep-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) ↾ suc ω)) | ||
| Theorem | satfsucom 35409* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at an element of the successor of ω. (Contributed by AV, 22-Sep-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → ((𝑀 Sat 𝐸)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
| Theorem | satfn 35410 | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 is a function over suc ω. (Contributed by AV, 6-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 Sat 𝐸) Fn suc ω) | ||
| Theorem | satom 35411* | The satisfaction predicate for wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at omega (ω). (Contributed by AV, 6-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑛 ∈ ω ((𝑀 Sat 𝐸)‘𝑛)) | ||
| Theorem | satfvsucom 35412* | The satisfaction predicate as function over wff codes at a successor of ω. (Contributed by AV, 22-Sep-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ suc ω) → (𝑆‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})‘𝑁)) | ||
| Theorem | satfv0 35413* | The value of the satisfaction predicate as function over wff codes at ∅. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) | ||
| Theorem | satfvsuclem1 35414* | Lemma 1 for satfvsuc 35416. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀 ↑m ω))} ∈ V) | ||
| Theorem | satfvsuclem2 35415* | Lemma 2 for satfvsuc 35416. (Contributed by AV, 8-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ∈ V) | ||
| Theorem | satfvsuc 35416* | The value of the satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 10-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | ||
| Theorem | satfv1lem 35417* | Lemma for satfv1 35418. (Contributed by AV, 9-Nov-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}) | ||
| Theorem | satfv1 35418* | The value of the satisfaction predicate as function over wff codes of height 1. (Contributed by AV, 9-Nov-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘1o) = ((𝑆‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) | ||
| Theorem | satfsschain 35419 | The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ⊆ 𝐴 → (𝑆‘𝐵) ⊆ (𝑆‘𝐴))) | ||
| Theorem | satfvsucsuc 35420* | The satisfaction predicate as function over wff codes of height (𝑁 + 1), expressed by the minimally necessary satisfaction predicates as function over wff codes of height 𝑁. (Contributed by AV, 21-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑆‘suc suc 𝑁) = ((𝑆‘suc 𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))})) | ||
| Theorem | satfbrsuc 35421* | The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝑃 = (𝑆‘𝑁) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢 ∈ 𝑃 (∃𝑣 ∈ 𝑃 (𝐴 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝐵 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))))) | ||
| Theorem | satfrel 35422 | The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑁)) | ||
| Theorem | satfdmlem 35423* | Lemma for satfdm 35424. (Contributed by AV, 12-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st ‘𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑎)))) | ||
| Theorem | satfdm 35424* | The domain of the satisfaction predicate as function over wff codes does not depend on the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 13-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑁 ∈ 𝑋 ∧ 𝐹 ∈ 𝑌)) → ∀𝑛 ∈ ω dom ((𝑀 Sat 𝐸)‘𝑛) = dom ((𝑁 Sat 𝐹)‘𝑛)) | ||
| Theorem | satfrnmapom 35425 | The range of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is a subset of the power set of all mappings from the natural numbers into the model 𝑀. (Contributed by AV, 13-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfv0fun 35426 | The value of the satisfaction predicate as function over wff codes at ∅ is a function. (Contributed by AV, 15-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) | ||
| Theorem | satf0 35427* | The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023.) |
| ⊢ (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))}) ↾ suc ω) | ||
| Theorem | satf0sucom 35428* | The satisfaction predicate as function over wff codes in the empty model with an empty binary relation at a successor of ω. (Contributed by AV, 14-Sep-2023.) |
| ⊢ (𝑁 ∈ suc ω → ((∅ Sat ∅)‘𝑁) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})), {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))})‘𝑁)) | ||
| Theorem | satf00 35429* | The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at ∅. (Contributed by AV, 14-Sep-2023.) |
| ⊢ ((∅ Sat ∅)‘∅) = {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗))} | ||
| Theorem | satf0suclem 35430* | Lemma for satf0suc 35431, sat1el2xp 35434 and fmlasuc0 35439. (Contributed by AV, 19-Sep-2023.) |
| ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ 𝑋 (∃𝑣 ∈ 𝑌 𝑥 = 𝐵 ∨ ∃𝑤 ∈ 𝑍 𝑥 = 𝐶))} ∈ V) | ||
| Theorem | satf0suc 35431* | The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation at a successor. (Contributed by AV, 19-Sep-2023.) |
| ⊢ 𝑆 = (∅ Sat ∅) ⇒ ⊢ (𝑁 ∈ ω → (𝑆‘suc 𝑁) = ((𝑆‘𝑁) ∪ {〈𝑥, 𝑦〉 ∣ (𝑦 = ∅ ∧ ∃𝑢 ∈ (𝑆‘𝑁)(∃𝑣 ∈ (𝑆‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢)))})) | ||
| Theorem | satf0op 35432* | An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023.) |
| ⊢ 𝑆 = (∅ Sat ∅) ⇒ ⊢ (𝑁 ∈ ω → (𝑋 ∈ (𝑆‘𝑁) ↔ ∃𝑥(𝑋 = 〈𝑥, ∅〉 ∧ 〈𝑥, ∅〉 ∈ (𝑆‘𝑁)))) | ||
| Theorem | satf0n0 35433 | The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023.) |
| ⊢ (𝑁 ∈ ω → ∅ ∉ ((∅ Sat ∅)‘𝑁)) | ||
| Theorem | sat1el2xp 35434* | The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023.) |
| ⊢ (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎∃𝑏(1st ‘𝑤) ∈ (ω × (𝑎 × 𝑏))) | ||
| Theorem | fmlafv 35435 | The valid Godel formulas of height 𝑁 is the domain of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 15-Sep-2023.) |
| ⊢ (𝑁 ∈ suc ω → (Fmla‘𝑁) = dom ((∅ Sat ∅)‘𝑁)) | ||
| Theorem | fmla 35436 | The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023.) |
| ⊢ (Fmla‘ω) = ∪ 𝑛 ∈ ω (Fmla‘𝑛) | ||
| Theorem | fmla0 35437* | The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 14-Sep-2023.) |
| ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} | ||
| Theorem | fmla0xp 35438 | The valid Godel formulas of height 0 is the set of all formulas of the form vi ∈ vj ("Godel-set of membership") coded as 〈∅, 〈𝑖, 𝑗〉〉. (Contributed by AV, 15-Sep-2023.) |
| ⊢ (Fmla‘∅) = ({∅} × (ω × ω)) | ||
| Theorem | fmlasuc0 35439* | The valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 18-Sep-2023.) |
| ⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢))})) | ||
| Theorem | fmlafvel 35440 | A class is a valid Godel formula of height 𝑁 iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at 𝑁. (Contributed by AV, 19-Sep-2023.) |
| ⊢ (𝑁 ∈ ω → (𝐹 ∈ (Fmla‘𝑁) ↔ 〈𝐹, ∅〉 ∈ ((∅ Sat ∅)‘𝑁))) | ||
| Theorem | fmlasuc 35441* | The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.) |
| ⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})) | ||
| Theorem | fmla1 35442* | The valid Godel formulas of height 1 is the set of all formulas of the form (𝑎⊼𝑔𝑏) and ∀𝑔𝑘𝑎 with atoms 𝑎, 𝑏 of the form 𝑥 ∈ 𝑦. (Contributed by AV, 20-Sep-2023.) |
| ⊢ (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) | ||
| Theorem | isfmlasuc 35443* | The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) | ||
| Theorem | fmlasssuc 35444 | The Godel formulas of height 𝑁 are a subset of the Godel formulas of height 𝑁 + 1. (Contributed by AV, 20-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (Fmla‘𝑁) ⊆ (Fmla‘suc 𝑁)) | ||
| Theorem | fmlaomn0 35445 | The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁)) | ||
| Theorem | fmlan0 35446 | The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ∅ ∉ (Fmla‘ω) | ||
| Theorem | gonan0 35447 | The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝐴⊼𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
| Theorem | goaln0 35448* | The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
| ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
| Theorem | gonarlem 35449* | Lemma for gonar 35450 (induction step). (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) | ||
| Theorem | gonar 35450* | If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ (𝑎⊼𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) | ||
| Theorem | goalrlem 35451* | Lemma for goalr 35452 (induction step). (Contributed by AV, 22-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))) | ||
| Theorem | goalr 35452* | If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁)) | ||
| Theorem | fmla0disjsuc 35453* | The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.) |
| ⊢ ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅ | ||
| Theorem | fmlasucdisj 35454* | The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅) | ||
| Theorem | satfdmfmla 35455 | The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) | ||
| Theorem | satffunlem 35456 | Lemma for satffunlem1lem1 35457 and satffunlem2lem1 35459. (Contributed by AV, 27-Oct-2023.) |
| ⊢ (((Fun 𝑍 ∧ (𝑠 ∈ 𝑍 ∧ 𝑟 ∈ 𝑍) ∧ (𝑢 ∈ 𝑍 ∧ 𝑣 ∈ 𝑍)) ∧ (𝑥 = ((1st ‘𝑠)⊼𝑔(1st ‘𝑟)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑠) ∩ (2nd ‘𝑟)))) ∧ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))))) → 𝑦 = 𝑤) | ||
| Theorem | satffunlem1lem1 35457* | Lemma for satffunlem1 35462. (Contributed by AV, 17-Oct-2023.) |
| ⊢ (Fun ((𝑀 Sat 𝐸)‘𝑁) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) | ||
| Theorem | satffunlem1lem2 35458* | Lemma 2 for satffunlem1 35462. (Contributed by AV, 23-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = ∅) | ||
| Theorem | satffunlem2lem1 35459* | Lemma 1 for satffunlem2 35463. (Contributed by AV, 28-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((Fun (𝑆‘suc 𝑁) ∧ (𝑆‘𝑁) ⊆ (𝑆‘suc 𝑁)) → Fun {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) | ||
| Theorem | dmopab3rexdif 35460* | The domain of an ordered pair class abstraction with three nested restricted existential quantifiers with differences. (Contributed by AV, 25-Oct-2023.) |
| ⊢ ((∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) ∧ 𝑆 ⊆ 𝑈) → dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)(𝑥 = 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)𝑥 = 𝐴)}) | ||
| Theorem | satffunlem2lem2 35461* | Lemma 2 for satffunlem2 35463. (Contributed by AV, 27-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ (((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ Fun (𝑆‘suc 𝑁)) → (dom (𝑆‘suc 𝑁) ∩ dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) = ∅) | ||
| Theorem | satffunlem1 35462 | Lemma 1 for satffun 35464: induction basis. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)) | ||
| Theorem | satffunlem2 35463 | Lemma 2 for satffun 35464: induction step. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))) | ||
| Theorem | satffun 35464 | The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)) | ||
| Theorem | satff 35465 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfun 35466 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfvel 35467 | An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | satfv0fvfmla0 35468* | The value of the satisfaction predicate as function over a wff code at ∅. (Contributed by AV, 2-Nov-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | satefv 35469 | The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | ||
| Theorem | sate0 35470 | The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | ||
| Theorem | satef 35471 | The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | sate0fv0 35472 | A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat∈ 𝑈) → 𝑆 = ∅)) | ||
| Theorem | satefvfmla0 35473* | The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | sategoelfvb 35474 | Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) | ||
| Theorem | sategoelfv 35475 | Condition of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership: The sets in model 𝑀 corresponding to the variables 𝐴 and 𝐵 under the assignment of 𝑆 are in a membership relation in 𝑀. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | ex-sategoelel 35476* | Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) | ||
| Theorem | ex-sategoel 35477* | Instance of sategoelfv 35475 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | satfv1fvfmla1 35478* | The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) | ||
| Theorem | 2goelgoanfmla1 35479 | Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o)) | ||
| Theorem | satefvfmla1 35480* | The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼) ∈ (𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾) ∈ (𝑎‘𝐿))}) | ||
| Theorem | ex-sategoelelomsuc 35481* | Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) ⇒ ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) | ||
| Theorem | ex-sategoelel12 35482 | Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) ⇒ ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) | ||
| Theorem | prv 35483 | The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) | ||
| Theorem | elnanelprv 35484 | The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9507. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) | ||
| Theorem | prv0 35485 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
| Theorem | prv1n 35486 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
| Syntax | cgon 35487 | The Godel-set of negation. (Note that this is not a wff.) |
| class ¬𝑔𝑈 | ||
| Syntax | cgoa 35488 | The Godel-set of conjunction. |
| class ∧𝑔 | ||
| Syntax | cgoi 35489 | The Godel-set of implication. |
| class →𝑔 | ||
| Syntax | cgoo 35490 | The Godel-set of disjunction. |
| class ∨𝑔 | ||
| Syntax | cgob 35491 | The Godel-set of equivalence. |
| class ↔𝑔 | ||
| Syntax | cgoq 35492 | The Godel-set of equality. |
| class =𝑔 | ||
| Syntax | cgox 35493 | The Godel-set of existential quantification. (Note that this is not a wff.) |
| class ∃𝑔𝑁𝑈 | ||
| Definition | df-gonot 35494 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
| Definition | df-goan 35495* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
| Definition | df-goim 35496* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
| Definition | df-goor 35497* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
| Definition | df-gobi 35498* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
| Definition | df-goeq 35499* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2705 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
| Definition | df-goex 35500 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |