| Metamath
Proof Explorer Theorem List (p. 355 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fmlasssuc 35401 | The Godel formulas of height 𝑁 are a subset of the Godel formulas of height 𝑁 + 1. (Contributed by AV, 20-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (Fmla‘𝑁) ⊆ (Fmla‘suc 𝑁)) | ||
| Theorem | fmlaomn0 35402 | The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁)) | ||
| Theorem | fmlan0 35403 | The empty set is not a Godel formula. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ∅ ∉ (Fmla‘ω) | ||
| Theorem | gonan0 35404 | The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝐴⊼𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
| Theorem | goaln0 35405* | The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
| ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) | ||
| Theorem | gonarlem 35406* | Lemma for gonar 35407 (induction step). (Contributed by AV, 21-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) | ||
| Theorem | gonar 35407* | If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for 𝐴 or 𝐵 being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ (𝑎⊼𝑔𝑏) ∈ (Fmla‘𝑁)) → (𝑎 ∈ (Fmla‘𝑁) ∧ 𝑏 ∈ (Fmla‘𝑁))) | ||
| Theorem | goalrlem 35408* | Lemma for goalr 35409 (induction step). (Contributed by AV, 22-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ((∀𝑔𝑖𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc 𝑁)) → (∀𝑔𝑖𝑎 ∈ (Fmla‘suc suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))) | ||
| Theorem | goalr 35409* | If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for 𝐴 being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ ∀𝑔𝑖𝑎 ∈ (Fmla‘𝑁)) → 𝑎 ∈ (Fmla‘𝑁)) | ||
| Theorem | fmla0disjsuc 35410* | The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.) |
| ⊢ ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅ | ||
| Theorem | fmlasucdisj 35411* | The valid Godel formulas of height (𝑁 + 1) is disjoint with the difference ((Fmla‘suc suc 𝑁) ∖ (Fmla‘suc 𝑁)), expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height (𝑁 + 1). (Contributed by AV, 20-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → ((Fmla‘suc 𝑁) ∩ {𝑥 ∣ (∃𝑢 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))(∃𝑣 ∈ (Fmla‘suc 𝑁)𝑥 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ∨ ∃𝑢 ∈ (Fmla‘𝑁)∃𝑣 ∈ ((Fmla‘suc 𝑁) ∖ (Fmla‘𝑁))𝑥 = (𝑢⊼𝑔𝑣))}) = ∅) | ||
| Theorem | satfdmfmla 35412 | The domain of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is the set of valid Godel formulas of height 𝑁. (Contributed by AV, 13-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)) | ||
| Theorem | satffunlem 35413 | Lemma for satffunlem1lem1 35414 and satffunlem2lem1 35416. (Contributed by AV, 27-Oct-2023.) |
| ⊢ (((Fun 𝑍 ∧ (𝑠 ∈ 𝑍 ∧ 𝑟 ∈ 𝑍) ∧ (𝑢 ∈ 𝑍 ∧ 𝑣 ∈ 𝑍)) ∧ (𝑥 = ((1st ‘𝑠)⊼𝑔(1st ‘𝑟)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑠) ∩ (2nd ‘𝑟)))) ∧ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑤 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))))) → 𝑦 = 𝑤) | ||
| Theorem | satffunlem1lem1 35414* | Lemma for satffunlem1 35419. (Contributed by AV, 17-Oct-2023.) |
| ⊢ (Fun ((𝑀 Sat 𝐸)‘𝑁) → Fun {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑁)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑘 ∈ 𝑀 ({〈𝑖, 𝑘〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) | ||
| Theorem | satffunlem1lem2 35415* | Lemma 2 for satffunlem1 35419. (Contributed by AV, 23-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ ∀𝑗 ∈ 𝑀 ({〈𝑖, 𝑗〉} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = ∅) | ||
| Theorem | satffunlem2lem1 35416* | Lemma 1 for satffunlem2 35420. (Contributed by AV, 28-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ ((Fun (𝑆‘suc 𝑁) ∧ (𝑆‘𝑁) ⊆ (𝑆‘suc 𝑁)) → Fun {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) | ||
| Theorem | dmopab3rexdif 35417* | The domain of an ordered pair class abstraction with three nested restricted existential quantifiers with differences. (Contributed by AV, 25-Oct-2023.) |
| ⊢ ((∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) ∧ 𝑆 ⊆ 𝑈) → dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)(𝑥 = 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (∃𝑢 ∈ (𝑈 ∖ 𝑆)(∃𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶) ∨ ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ (𝑈 ∖ 𝑆)𝑥 = 𝐴)}) | ||
| Theorem | satffunlem2lem2 35418* | Lemma 2 for satffunlem2 35420. (Contributed by AV, 27-Oct-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) & ⊢ 𝐴 = ((𝑀 ↑m ω) ∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) & ⊢ 𝐵 = {𝑎 ∈ (𝑀 ↑m ω) ∣ ∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⇒ ⊢ (((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) ∧ Fun (𝑆‘suc 𝑁)) → (dom (𝑆‘suc 𝑁) ∩ dom {〈𝑥, 𝑦〉 ∣ (∃𝑢 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(∃𝑣 ∈ (𝑆‘suc 𝑁)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = 𝐵)) ∨ ∃𝑢 ∈ (𝑆‘𝑁)∃𝑣 ∈ ((𝑆‘suc 𝑁) ∖ (𝑆‘𝑁))(𝑥 = ((1st ‘𝑢)⊼𝑔(1st ‘𝑣)) ∧ 𝑦 = 𝐴))}) = ∅) | ||
| Theorem | satffunlem1 35419 | Lemma 1 for satffun 35421: induction basis. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)) | ||
| Theorem | satffunlem2 35420 | Lemma 2 for satffun 35421: induction step. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))) | ||
| Theorem | satffun 35421 | The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)) | ||
| Theorem | satff 35422 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfun 35423 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfvel 35424 | An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | satfv0fvfmla0 35425* | The value of the satisfaction predicate as function over a wff code at ∅. (Contributed by AV, 2-Nov-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | satefv 35426 | The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | ||
| Theorem | sate0 35427 | The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | ||
| Theorem | satef 35428 | The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | sate0fv0 35429 | A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat∈ 𝑈) → 𝑆 = ∅)) | ||
| Theorem | satefvfmla0 35430* | The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | sategoelfvb 35431 | Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) | ||
| Theorem | sategoelfv 35432 | Condition of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership: The sets in model 𝑀 corresponding to the variables 𝐴 and 𝐵 under the assignment of 𝑆 are in a membership relation in 𝑀. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | ex-sategoelel 35433* | Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) | ||
| Theorem | ex-sategoel 35434* | Instance of sategoelfv 35432 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | satfv1fvfmla1 35435* | The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) | ||
| Theorem | 2goelgoanfmla1 35436 | Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o)) | ||
| Theorem | satefvfmla1 35437* | The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼) ∈ (𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾) ∈ (𝑎‘𝐿))}) | ||
| Theorem | ex-sategoelelomsuc 35438* | Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) ⇒ ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) | ||
| Theorem | ex-sategoelel12 35439 | Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) ⇒ ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) | ||
| Theorem | prv 35440 | The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) | ||
| Theorem | elnanelprv 35441 | The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9492. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) | ||
| Theorem | prv0 35442 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
| Theorem | prv1n 35443 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
| Syntax | cgon 35444 | The Godel-set of negation. (Note that this is not a wff.) |
| class ¬𝑔𝑈 | ||
| Syntax | cgoa 35445 | The Godel-set of conjunction. |
| class ∧𝑔 | ||
| Syntax | cgoi 35446 | The Godel-set of implication. |
| class →𝑔 | ||
| Syntax | cgoo 35447 | The Godel-set of disjunction. |
| class ∨𝑔 | ||
| Syntax | cgob 35448 | The Godel-set of equivalence. |
| class ↔𝑔 | ||
| Syntax | cgoq 35449 | The Godel-set of equality. |
| class =𝑔 | ||
| Syntax | cgox 35450 | The Godel-set of existential quantification. (Note that this is not a wff.) |
| class ∃𝑔𝑁𝑈 | ||
| Definition | df-gonot 35451 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
| Definition | df-goan 35452* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
| Definition | df-goim 35453* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
| Definition | df-goor 35454* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
| Definition | df-gobi 35455* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
| Definition | df-goeq 35456* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2702 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
| Definition | df-goex 35457 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
| Syntax | cgze 35458 | The Axiom of Extensionality. |
| class AxExt | ||
| Syntax | cgzr 35459 | The Axiom Scheme of Replacement. |
| class AxRep | ||
| Syntax | cgzp 35460 | The Axiom of Power Sets. |
| class AxPow | ||
| Syntax | cgzu 35461 | The Axiom of Unions. |
| class AxUn | ||
| Syntax | cgzg 35462 | The Axiom of Regularity. |
| class AxReg | ||
| Syntax | cgzi 35463 | The Axiom of Infinity. |
| class AxInf | ||
| Syntax | cgzf 35464 | The set of models of ZF. |
| class ZF | ||
| Definition | df-gzext 35465 | The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxExt = (∀𝑔2o((2o∈𝑔∅) ↔𝑔 (2o∈𝑔1o)) →𝑔 (∅=𝑔1o)) | ||
| Definition | df-gzrep 35466 | The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔 ∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔 ∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) | ||
| Definition | df-gzpow 35467 | The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxPow = ∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o) ↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzun 35468 | The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxUn = ∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzreg 35469 | The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxReg = (∃𝑔1o(1o∈𝑔∅) →𝑔 ∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ¬𝑔(2o∈𝑔∅)))) | ||
| Definition | df-gzinf 35470 | The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) | ||
| Definition | df-gzf 35471* | Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))} | ||
This is a formalization of Appendix C of the Metamath book, which describes the mathematical representation of a formal system, of which set.mm (this file) is one. | ||
| Syntax | cmcn 35472 | The set of constants. |
| class mCN | ||
| Syntax | cmvar 35473 | The set of variables. |
| class mVR | ||
| Syntax | cmty 35474 | The type function. |
| class mType | ||
| Syntax | cmvt 35475 | The set of variable typecodes. |
| class mVT | ||
| Syntax | cmtc 35476 | The set of typecodes. |
| class mTC | ||
| Syntax | cmax 35477 | The set of axioms. |
| class mAx | ||
| Syntax | cmrex 35478 | The set of raw expressions. |
| class mREx | ||
| Syntax | cmex 35479 | The set of expressions. |
| class mEx | ||
| Syntax | cmdv 35480 | The set of distinct variables. |
| class mDV | ||
| Syntax | cmvrs 35481 | The variables in an expression. |
| class mVars | ||
| Syntax | cmrsub 35482 | The set of raw substitutions. |
| class mRSubst | ||
| Syntax | cmsub 35483 | The set of substitutions. |
| class mSubst | ||
| Syntax | cmvh 35484 | The set of variable hypotheses. |
| class mVH | ||
| Syntax | cmpst 35485 | The set of pre-statements. |
| class mPreSt | ||
| Syntax | cmsr 35486 | The reduct of a pre-statement. |
| class mStRed | ||
| Syntax | cmsta 35487 | The set of statements. |
| class mStat | ||
| Syntax | cmfs 35488 | The set of formal systems. |
| class mFS | ||
| Syntax | cmcls 35489 | The closure of a set of statements. |
| class mCls | ||
| Syntax | cmpps 35490 | The set of provable pre-statements. |
| class mPPSt | ||
| Syntax | cmthm 35491 | The set of theorems. |
| class mThm | ||
| Definition | df-mcn 35492 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCN = Slot 1 | ||
| Definition | df-mvar 35493 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVR = Slot 2 | ||
| Definition | df-mty 35494 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mType = Slot 3 | ||
| Definition | df-mtc 35495 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mTC = Slot 4 | ||
| Definition | df-mmax 35496 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mAx = Slot 5 | ||
| Definition | df-mvt 35497 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
| Definition | df-mrex 35498 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
| Definition | df-mex 35499 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
| Definition | df-mdv 35500 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |