| Metamath
Proof Explorer Theorem List (p. 355 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | satffunlem1 35401 | Lemma 1 for satffun 35403: induction basis. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)) | ||
| Theorem | satffunlem2 35402 | Lemma 2 for satffun 35403: induction step. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑁 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑁) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑁))) | ||
| Theorem | satffun 35403 | The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)) | ||
| Theorem | satff 35404 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 28-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfun 35405 | The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀 ↑m ω)) | ||
| Theorem | satfvel 35406 | An element of the value of the satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀 at the code 𝑈 for a wff using ∈ , ⊼ , ∀ is a valuation 𝑆:ω⟶𝑀 of the variables (v0 = (𝑆‘∅), v1 = (𝑆‘1o), etc.) so that 𝑈 is true under the assignment 𝑆. (Contributed by AV, 29-Oct-2023.) |
| ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat 𝐸)‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | satfv0fvfmla0 35407* | The value of the satisfaction predicate as function over a wff code at ∅. (Contributed by AV, 2-Nov-2023.) |
| ⊢ 𝑆 = (𝑀 Sat 𝐸) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | satefv 35408 | The simplified satisfaction predicate as function over wff codes in the model 𝑀 at the code 𝑈. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | ||
| Theorem | sate0 35409 | The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) | ||
| Theorem | satef 35410 | The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) | ||
| Theorem | sate0fv0 35411 | A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat∈ 𝑈) → 𝑆 = ∅)) | ||
| Theorem | satefvfmla0 35412* | The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑋 ∈ (Fmla‘∅)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘𝑋))) ∈ (𝑎‘(2nd ‘(2nd ‘𝑋)))}) | ||
| Theorem | sategoelfvb 35413 | Characterization of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆 ∈ 𝐸 ↔ (𝑆 ∈ (𝑀 ↑m ω) ∧ (𝑆‘𝐴) ∈ (𝑆‘𝐵)))) | ||
| Theorem | sategoelfv 35414 | Condition of a valuation 𝑆 of a simplified satisfaction predicate for a Godel-set of membership: The sets in model 𝑀 corresponding to the variables 𝐴 and 𝐵 under the assignment of 𝑆 are in a membership relation in 𝑀. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑆 ∈ 𝐸) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | ex-sategoelel 35415* | Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → 𝑆 ∈ 𝐸) | ||
| Theorem | ex-sategoel 35416* | Instance of sategoelfv 35414 for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.) |
| ⊢ 𝐸 = (𝑀 Sat∈ (𝐴∈𝑔𝐵)) & ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))) ⇒ ⊢ (((𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵)) → (𝑆‘𝐴) ∈ (𝑆‘𝐵)) | ||
| Theorem | satfv1fvfmla1 35417* | The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) | ||
| Theorem | 2goelgoanfmla1 35418 | Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o)) | ||
| Theorem | satefvfmla1 35419* | The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.) |
| ⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat∈ 𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬ (𝑎‘𝐼) ∈ (𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾) ∈ (𝑎‘𝐿))}) | ||
| Theorem | ex-sategoelelomsuc 35420* | Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 𝑍 ∈ suc 𝑍 = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 𝑍, suc 𝑍)) ⇒ ⊢ (𝑍 ∈ ω → 𝑆 ∈ (ω Sat∈ (2o∈𝑔1o))) | ||
| Theorem | ex-sategoelel12 35421 | Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) ⇒ ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) | ||
| Theorem | prv 35422 | The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) | ||
| Theorem | elnanelprv 35423 | The wff (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) encoded as ((𝐴∈𝑔𝐵) ⊼𝑔(𝐵∈𝑔𝐴)) is true in any model 𝑀. This is the model theoretic proof of elnanel 9567. (Contributed by AV, 5-Nov-2023.) |
| ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝑀⊧((𝐴∈𝑔𝐵)⊼𝑔(𝐵∈𝑔𝐴))) | ||
| Theorem | prv0 35424 | Every wff encoded as 𝑈 is true in an "empty model" (𝑀 = ∅). Since ⊧ is defined in terms of the interpretations making the given formula true, it is not defined on the "empty model", since there are no interpretations. In particular, the empty set on the LHS of ⊧ should not be interpreted as the empty model, because ∃𝑥𝑥 = 𝑥 is not satisfied on the empty model. (Contributed by AV, 19-Nov-2023.) |
| ⊢ (𝑈 ∈ (Fmla‘ω) → ∅⊧𝑈) | ||
| Theorem | prv1n 35425 | No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.) |
| ⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋 ∈ 𝑉) → ¬ {𝑋}⊧(𝐼∈𝑔𝐽)) | ||
| Syntax | cgon 35426 | The Godel-set of negation. (Note that this is not a wff.) |
| class ¬𝑔𝑈 | ||
| Syntax | cgoa 35427 | The Godel-set of conjunction. |
| class ∧𝑔 | ||
| Syntax | cgoi 35428 | The Godel-set of implication. |
| class →𝑔 | ||
| Syntax | cgoo 35429 | The Godel-set of disjunction. |
| class ∨𝑔 | ||
| Syntax | cgob 35430 | The Godel-set of equivalence. |
| class ↔𝑔 | ||
| Syntax | cgoq 35431 | The Godel-set of equality. |
| class =𝑔 | ||
| Syntax | cgox 35432 | The Godel-set of existential quantification. (Note that this is not a wff.) |
| class ∃𝑔𝑁𝑈 | ||
| Definition | df-gonot 35433 | Define the Godel-set of negation. Here the argument 𝑈 is also a Godel-set corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) | ||
| Definition | df-goan 35434* | Define the Godel-set of conjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢⊼𝑔𝑣)) | ||
| Definition | df-goim 35435* | Define the Godel-set of implication. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) | ||
| Definition | df-goor 35436* | Define the Godel-set of disjunction. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢 →𝑔 𝑣)) | ||
| Definition | df-gobi 35437* | Define the Godel-set of equivalence. Here the arguments 𝑈 and 𝑉 are also Godel-sets corresponding to smaller formulas. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔 𝑢))) | ||
| Definition | df-goeq 35438* | Define the Godel-set of equality. Here the arguments 𝑥 = 〈𝑁, 𝑃〉 correspond to vN and vP , so (∅=𝑔1o) actually means v0 = v1 , not 0 = 1. Here we use the trick mentioned in ax-ext 2702 to introduce equality as a defined notion in terms of ∈𝑔. The expression suc (𝑢 ∪ 𝑣) = max (𝑢, 𝑣) + 1 here is a convenient way of getting a dummy variable distinct from 𝑢 and 𝑣. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc (𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) | ||
| Definition | df-goex 35439 | Define the Godel-set of existential quantification. Here 𝑁 ∈ ω corresponds to vN , and 𝑈 represents another formula, and this expression is [∃𝑥𝜑] = ∃𝑔𝑁𝑈 where 𝑥 is the 𝑁-th variable, 𝑈 = [𝜑] is the code for 𝜑. Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ∃𝑔𝑁𝑈 = ¬𝑔∀𝑔𝑁¬𝑔𝑈 | ||
| Syntax | cgze 35440 | The Axiom of Extensionality. |
| class AxExt | ||
| Syntax | cgzr 35441 | The Axiom Scheme of Replacement. |
| class AxRep | ||
| Syntax | cgzp 35442 | The Axiom of Power Sets. |
| class AxPow | ||
| Syntax | cgzu 35443 | The Axiom of Unions. |
| class AxUn | ||
| Syntax | cgzg 35444 | The Axiom of Regularity. |
| class AxReg | ||
| Syntax | cgzi 35445 | The Axiom of Infinity. |
| class AxInf | ||
| Syntax | cgzf 35446 | The set of models of ZF. |
| class ZF | ||
| Definition | df-gzext 35447 | The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxExt = (∀𝑔2o((2o∈𝑔∅) ↔𝑔 (2o∈𝑔1o)) →𝑔 (∅=𝑔1o)) | ||
| Definition | df-gzrep 35448 | The Godel-set version of the Axiom Scheme of Replacement. Since this is a scheme and not a single axiom, it manifests as a function on wffs, each giving rise to a different axiom. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔 ∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔 ∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) | ||
| Definition | df-gzpow 35449 | The Godel-set version of the Axiom of Power Sets. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxPow = ∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o) ↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzun 35450 | The Godel-set version of the Axiom of Unions. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxUn = ∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) | ||
| Definition | df-gzreg 35451 | The Godel-set version of the Axiom of Regularity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxReg = (∃𝑔1o(1o∈𝑔∅) →𝑔 ∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ¬𝑔(2o∈𝑔∅)))) | ||
| Definition | df-gzinf 35452 | The Godel-set version of the Axiom of Infinity. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o) →𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) | ||
| Definition | df-gzf 35453* | Define the class of all (transitive) models of ZF. (Contributed by Mario Carneiro, 14-Jul-2013.) |
| ⊢ ZF = {𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))} | ||
This is a formalization of Appendix C of the Metamath book, which describes the mathematical representation of a formal system, of which set.mm (this file) is one. | ||
| Syntax | cmcn 35454 | The set of constants. |
| class mCN | ||
| Syntax | cmvar 35455 | The set of variables. |
| class mVR | ||
| Syntax | cmty 35456 | The type function. |
| class mType | ||
| Syntax | cmvt 35457 | The set of variable typecodes. |
| class mVT | ||
| Syntax | cmtc 35458 | The set of typecodes. |
| class mTC | ||
| Syntax | cmax 35459 | The set of axioms. |
| class mAx | ||
| Syntax | cmrex 35460 | The set of raw expressions. |
| class mREx | ||
| Syntax | cmex 35461 | The set of expressions. |
| class mEx | ||
| Syntax | cmdv 35462 | The set of distinct variables. |
| class mDV | ||
| Syntax | cmvrs 35463 | The variables in an expression. |
| class mVars | ||
| Syntax | cmrsub 35464 | The set of raw substitutions. |
| class mRSubst | ||
| Syntax | cmsub 35465 | The set of substitutions. |
| class mSubst | ||
| Syntax | cmvh 35466 | The set of variable hypotheses. |
| class mVH | ||
| Syntax | cmpst 35467 | The set of pre-statements. |
| class mPreSt | ||
| Syntax | cmsr 35468 | The reduct of a pre-statement. |
| class mStRed | ||
| Syntax | cmsta 35469 | The set of statements. |
| class mStat | ||
| Syntax | cmfs 35470 | The set of formal systems. |
| class mFS | ||
| Syntax | cmcls 35471 | The closure of a set of statements. |
| class mCls | ||
| Syntax | cmpps 35472 | The set of provable pre-statements. |
| class mPPSt | ||
| Syntax | cmthm 35473 | The set of theorems. |
| class mThm | ||
| Definition | df-mcn 35474 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCN = Slot 1 | ||
| Definition | df-mvar 35475 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVR = Slot 2 | ||
| Definition | df-mty 35476 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mType = Slot 3 | ||
| Definition | df-mtc 35477 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mTC = Slot 4 | ||
| Definition | df-mmax 35478 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mAx = Slot 5 | ||
| Definition | df-mvt 35479 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
| Definition | df-mrex 35480 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
| Definition | df-mex 35481 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
| Definition | df-mdv 35482 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
| Definition | df-mvrs 35483* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
| Definition | df-mrsub 35484* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Definition | df-msub 35485* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Definition | df-mvh 35486* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
| Definition | df-mpst 35487* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
| Definition | df-msr 35488* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
| Definition | df-msta 35489 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
| Definition | df-mfs 35490* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
| Definition | df-mcls 35491* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
| Definition | df-mpps 35492* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
| Definition | df-mthm 35493 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
| Theorem | mvtval 35494 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
| Theorem | mrexval 35495 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mexval 35496 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
| Theorem | mexval2 35497 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mdvval 35498 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
| Theorem | mvrsval 35499 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
| Theorem | mvrsfpw 35500 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |