![]() |
Metamath
Proof Explorer Theorem List (p. 355 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isoml 35401* | The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) | ||
Theorem | isomliN 35402* | Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
⊢ 𝐾 ∈ OL & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) ⇒ ⊢ 𝐾 ∈ OML | ||
Theorem | omlol 35403 | An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | ||
Theorem | omlop 35404 | An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | ||
Theorem | omllat 35405 | An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | ||
Theorem | omllaw 35406 | The orthomodular law. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) | ||
Theorem | omllaw2N 35407 | Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 29033 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) | ||
Theorem | omllaw3 35408 | Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 28884 analog.) (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) | ||
Theorem | omllaw4 35409 | Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋)) | ||
Theorem | omllaw5N 35410 | The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 29061 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌)) | ||
Theorem | cmtcomlemN 35411 | Lemma for cmtcomN 35412. (cmcmlem 29039 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑌𝐶𝑋)) | ||
Theorem | cmtcomN 35412 | Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 29040 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) | ||
Theorem | cmt2N 35413 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 29041 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmt3N 35414 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 29043 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) | ||
Theorem | cmt4N 35415 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 29043 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmtbr2N 35416 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 29044 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))))) | ||
Theorem | cmtbr3N 35417 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 29056 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) | ||
Theorem | cmtbr4N 35418 | Alternate definition for the commutes relation. (cmbr4i 29049 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) | ||
Theorem | lecmtN 35419 | Ordered elements commute. (lecmi 29050 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑋𝐶𝑌)) | ||
Theorem | cmtidN 35420 | Any element commutes with itself. (cmidi 29058 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → 𝑋𝐶𝑋) | ||
Theorem | omlfh1N 35421 | Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 29066 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
Theorem | omlfh3N 35422 | Foulis-Holland Theorem, part 3. Dual of omlfh1N 35421. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
Theorem | omlmod1i2N 35423 | Analogue of modular law atmod1i2 36022 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ 𝑍)) | ||
Theorem | omlspjN 35424 | Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌) = 𝑋) | ||
Syntax | ccvr 35425 | Extend class notation with covers relation. |
class ⋖ | ||
Syntax | catm 35426 | Extend class notation with atoms. |
class Atoms | ||
Syntax | cal 35427 | Extend class notation with atomic lattices. |
class AtLat | ||
Syntax | clc 35428 | Extend class notation with lattices with the covering property. |
class CvLat | ||
Definition | df-covers 35429* | Define the covers relation ("is covered by") for posets. "𝑎 is covered by 𝑏 " means that 𝑎 is strictly less than 𝑏 and there is nothing in between. See cvrval 35432 for the relation form. (Contributed by NM, 18-Sep-2011.) |
⊢ ⋖ = (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) | ||
Definition | df-ats 35430* | Define the class of poset atoms. (Contributed by NM, 18-Sep-2011.) |
⊢ Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) | ||
Theorem | cvrfval 35431* | Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) | ||
Theorem | cvrval 35432* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 29730 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | ||
Theorem | cvrlt 35433 | The covers relation implies the less-than relation. (cvpss 29733 analog.) (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) | ||
Theorem | cvrnbtwn 35434 | There is no element between the two arguments of the covers relation. (cvnbtwn 29734 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) | ||
Theorem | ncvr1 35435 | No element covers the lattice unit. (Contributed by NM, 8-Jul-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) | ||
Theorem | cvrletrN 35436 | Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | cvrval2 35437* | Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 29731 analog.) (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧 ∈ 𝐵 ((𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌) → 𝑧 = 𝑌)))) | ||
Theorem | cvrnbtwn2 35438 | The covers relation implies no in-betweenness. (cvnbtwn2 29735 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 = 𝑌)) | ||
Theorem | cvrnbtwn3 35439 | The covers relation implies no in-betweenness. (cvnbtwn3 29736 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌) ↔ 𝑋 = 𝑍)) | ||
Theorem | cvrcon3b 35440 | Contraposition law for the covers relation. (cvcon3 29732 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑌)𝐶( ⊥ ‘𝑋))) | ||
Theorem | cvrle 35441 | The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) | ||
Theorem | cvrnbtwn4 35442 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 29737 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) | ||
Theorem | cvrnle 35443 | The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
Theorem | cvrne 35444 | The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≠ 𝑌) | ||
Theorem | cvrnrefN 35445 | The covers relation is not reflexive. (cvnref 29739 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) | ||
Theorem | cvrcmp 35446 | If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑍𝐶𝑋 ∧ 𝑍𝐶𝑌)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | cvrcmp2 35447 | If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | pats 35448* | The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | ||
Theorem | isat 35449 | The predicate "is an atom". (ela 29787 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) | ||
Theorem | isat2 35450 | The predicate "is an atom". (elatcv0 29789 analog.) (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) | ||
Theorem | atcvr0 35451 | An atom covers zero. (atcv0 29790 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) | ||
Theorem | atbase 35452 | An atom is a member of the lattice base set (i.e. a lattice element). (atelch 29792 analog.) (Contributed by NM, 10-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | ||
Theorem | atssbase 35453 | The set of atoms is a subset of the base set. (atssch 29791 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | 0ltat 35454 | An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) | ||
Theorem | leatb 35455 | A poset element less than or equal to an atom equals either zero or the atom. (atss 29794 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) | ||
Theorem | leat 35456 | A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | ||
Theorem | leat2 35457 | A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) | ||
Theorem | leat3 35458 | A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )) | ||
Theorem | meetat 35459 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Theorem | meetat2 35460 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Definition | df-atl 35461* | Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} | ||
Theorem | isatl 35462* | The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) | ||
Theorem | atllat 35463 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | ||
Theorem | atlpos 35464 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | ||
Theorem | atl0dm 35465 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) | ||
Theorem | atl0cl 35466 | An atomic lattice has a zero element. We can use this in place of op0cl 35347 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) | ||
Theorem | atl0le 35467 | Orthoposet zero is less than or equal to any element. (ch0le 28889 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
Theorem | atlle0 35468 | An element less than or equal to zero equals zero. (chle0 28891 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
Theorem | atlltn0 35469 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
Theorem | isat3 35470* | The predicate "is an atom". (elat2 29788 analog.) (Contributed by NM, 27-Apr-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) | ||
Theorem | atn0 35471 | An atom is not zero. (atne0 29793 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) | ||
Theorem | atnle0 35472 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) | ||
Theorem | atlen0 35473 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) | ||
Theorem | atcmp 35474 | If two atoms are comparable, they are equal. (atsseq 29795 analog.) (Contributed by NM, 13-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) | ||
Theorem | atncmp 35475 | Frequently-used variation of atcmp 35474. (Contributed by NM, 29-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | atnlt 35476 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) | ||
Theorem | atcvreq0 35477 | An element covered by an atom must be zero. (atcveq0 29796 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋𝐶𝑃 ↔ 𝑋 = 0 )) | ||
Theorem | atncvrN 35478 | Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) | ||
Theorem | atlex 35479* | Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 29808 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) | ||
Theorem | atnle 35480 | Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 29824 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) | ||
Theorem | atnem0 35481 | The meet of distinct atoms is zero. (atnemeq0 29825 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) | ||
Theorem | atlatmstc 35482* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 29810 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
Theorem | atlatle 35483* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 29819 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) | ||
Theorem | atlrelat1 35484* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 29811, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | ||
Definition | df-cvlat 35485* | Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.) |
⊢ CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐 ∧ 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))} | ||
Theorem | iscvlat 35486* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
Theorem | iscvlat2N 35487* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
Theorem | cvlatl 35488 | An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | ||
Theorem | cvllat 35489 | An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | ||
Theorem | cvlposN 35490 | An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Poset) | ||
Theorem | cvlexch1 35491 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | cvlexch2 35492 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) | ||
Theorem | cvlexchb1 35493 | An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | cvlexchb2 35494 | An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) | ||
Theorem | cvlexch3 35495 | An atomic covering lattice has the exchange property. (atexch 29829 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | cvlexch4N 35496 | An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | cvlatexchb1 35497 | A version of cvlexchb1 35493 for atoms. (Contributed by NM, 5-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) | ||
Theorem | cvlatexchb2 35498 | A version of cvlexchb2 35494 for atoms. (Contributed by NM, 5-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) | ||
Theorem | cvlatexch1 35499 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) | ||
Theorem | cvlatexch2 35500 | Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) → 𝑄 ≤ (𝑃 ∨ 𝑅))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |