Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brofs Structured version   Visualization version   GIF version

Theorem brofs 36047
Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.)
Assertion
Ref Expression
brofs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))

Proof of Theorem brofs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4822 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
21breq2d 5101 . . . 4 (𝑎 = 𝐴 → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 Btwn ⟨𝐴, 𝑐⟩))
32anbi1d 631 . . 3 (𝑎 = 𝐴 → ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
4 opeq1 4822 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54breq1d 5099 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩))
65anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
7 opeq1 4822 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
87breq1d 5099 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
98anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))
103, 6, 93anbi123d 1438 . 2 (𝑎 = 𝐴 → (((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩))))
11 breq1 5092 . . . 4 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝑐⟩))
1211anbi1d 631 . . 3 (𝑏 = 𝐵 → ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
13 opeq2 4823 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1413breq1d 5099 . . . 4 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩))
15 opeq1 4822 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1615breq1d 5099 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))
1714, 16anbi12d 632 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
18 opeq1 4822 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑑⟩ = ⟨𝐵, 𝑑⟩)
1918breq1d 5099 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))
2019anbi2d 630 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)))
2112, 17, 203anbi123d 1438 . 2 (𝑏 = 𝐵 → (((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
22 opeq2 4823 . . . . 5 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
2322breq2d 5101 . . . 4 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝐶⟩))
2423anbi1d 631 . . 3 (𝑐 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
25 opeq2 4823 . . . . 5 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2625breq1d 5099 . . . 4 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))
2726anbi2d 630 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
2824, 273anbi12d 1439 . 2 (𝑐 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
29 opeq2 4823 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
3029breq1d 5099 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
31 opeq2 4823 . . . . 5 (𝑑 = 𝐷 → ⟨𝐵, 𝑑⟩ = ⟨𝐵, 𝐷⟩)
3231breq1d 5099 . . . 4 (𝑑 = 𝐷 → (⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))
3330, 32anbi12d 632 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
34333anbi3d 1444 . 2 (𝑑 = 𝐷 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
35 opeq1 4822 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑔⟩ = ⟨𝐸, 𝑔⟩)
3635breq2d 5101 . . . 4 (𝑒 = 𝐸 → (𝑓 Btwn ⟨𝑒, 𝑔⟩ ↔ 𝑓 Btwn ⟨𝐸, 𝑔⟩))
3736anbi2d 630 . . 3 (𝑒 = 𝐸 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩)))
38 opeq1 4822 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
3938breq2d 5101 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩))
4039anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
41 opeq1 4822 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
4241breq2d 5101 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
4342anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
4437, 40, 433anbi123d 1438 . 2 (𝑒 = 𝐸 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
45 breq1 5092 . . . 4 (𝑓 = 𝐹 → (𝑓 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝑔⟩))
4645anbi2d 630 . . 3 (𝑓 = 𝐹 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩)))
47 opeq2 4823 . . . . 5 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
4847breq2d 5101 . . . 4 (𝑓 = 𝐹 → (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩))
49 opeq1 4822 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
5049breq2d 5101 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩))
5148, 50anbi12d 632 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩)))
52 opeq1 4822 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, ⟩ = ⟨𝐹, ⟩)
5352breq2d 5101 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))
5453anbi2d 630 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)))
5546, 51, 543anbi123d 1438 . 2 (𝑓 = 𝐹 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
56 opeq2 4823 . . . . 5 (𝑔 = 𝐺 → ⟨𝐸, 𝑔⟩ = ⟨𝐸, 𝐺⟩)
5756breq2d 5101 . . . 4 (𝑔 = 𝐺 → (𝐹 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝐺⟩))
5857anbi2d 630 . . 3 (𝑔 = 𝐺 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
59 opeq2 4823 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
6059breq2d 5101 . . . 4 (𝑔 = 𝐺 → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
6160anbi2d 630 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
6258, 613anbi12d 1439 . 2 (𝑔 = 𝐺 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
63 opeq2 4823 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
6463breq2d 5101 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
65 opeq2 4823 . . . . 5 ( = 𝐻 → ⟨𝐹, ⟩ = ⟨𝐹, 𝐻⟩)
6665breq2d 5101 . . . 4 ( = 𝐻 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
6764, 66anbi12d 632 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
68673anbi3d 1444 . 2 ( = 𝐻 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
69 fveq2 6822 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
70 df-ofs 36025 . 2 OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))}
7110, 21, 28, 34, 44, 55, 62, 68, 69, 70br8 35800 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4579   class class class wbr 5089  cfv 6481  cn 12125  𝔼cee 28866   Btwn cbtwn 28867  Cgrccgr 28868   OuterFiveSeg cofs 36024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-iota 6437  df-fv 6489  df-ofs 36025
This theorem is referenced by:  5segofs  36048  ofscom  36049  cgrextend  36050  segconeq  36052  ifscgr  36086  brofs2  36119
  Copyright terms: Public domain W3C validator