Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brofs Structured version   Visualization version   GIF version

Theorem brofs 35979
Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.)
Assertion
Ref Expression
brofs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))

Proof of Theorem brofs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4824 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
21breq2d 5104 . . . 4 (𝑎 = 𝐴 → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 Btwn ⟨𝐴, 𝑐⟩))
32anbi1d 631 . . 3 (𝑎 = 𝐴 → ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
4 opeq1 4824 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
54breq1d 5102 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩))
65anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
7 opeq1 4824 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
87breq1d 5102 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
98anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))
103, 6, 93anbi123d 1438 . 2 (𝑎 = 𝐴 → (((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩))))
11 breq1 5095 . . . 4 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝑐⟩))
1211anbi1d 631 . . 3 (𝑏 = 𝐵 → ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
13 opeq2 4825 . . . . 5 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
1413breq1d 5102 . . . 4 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩))
15 opeq1 4824 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1615breq1d 5102 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))
1714, 16anbi12d 632 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
18 opeq1 4824 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑑⟩ = ⟨𝐵, 𝑑⟩)
1918breq1d 5102 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))
2019anbi2d 630 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)))
2112, 17, 203anbi123d 1438 . 2 (𝑏 = 𝐵 → (((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
22 opeq2 4825 . . . . 5 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
2322breq2d 5104 . . . 4 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝐶⟩))
2423anbi1d 631 . . 3 (𝑐 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
25 opeq2 4825 . . . . 5 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2625breq1d 5102 . . . 4 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))
2726anbi2d 630 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
2824, 273anbi12d 1439 . 2 (𝑐 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
29 opeq2 4825 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
3029breq1d 5102 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
31 opeq2 4825 . . . . 5 (𝑑 = 𝐷 → ⟨𝐵, 𝑑⟩ = ⟨𝐵, 𝐷⟩)
3231breq1d 5102 . . . 4 (𝑑 = 𝐷 → (⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))
3330, 32anbi12d 632 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
34333anbi3d 1444 . 2 (𝑑 = 𝐷 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
35 opeq1 4824 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑔⟩ = ⟨𝐸, 𝑔⟩)
3635breq2d 5104 . . . 4 (𝑒 = 𝐸 → (𝑓 Btwn ⟨𝑒, 𝑔⟩ ↔ 𝑓 Btwn ⟨𝐸, 𝑔⟩))
3736anbi2d 630 . . 3 (𝑒 = 𝐸 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩)))
38 opeq1 4824 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
3938breq2d 5104 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩))
4039anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
41 opeq1 4824 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
4241breq2d 5104 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
4342anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
4437, 40, 433anbi123d 1438 . 2 (𝑒 = 𝐸 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
45 breq1 5095 . . . 4 (𝑓 = 𝐹 → (𝑓 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝑔⟩))
4645anbi2d 630 . . 3 (𝑓 = 𝐹 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩)))
47 opeq2 4825 . . . . 5 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
4847breq2d 5104 . . . 4 (𝑓 = 𝐹 → (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩))
49 opeq1 4824 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
5049breq2d 5104 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩))
5148, 50anbi12d 632 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩)))
52 opeq1 4824 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, ⟩ = ⟨𝐹, ⟩)
5352breq2d 5104 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))
5453anbi2d 630 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)))
5546, 51, 543anbi123d 1438 . 2 (𝑓 = 𝐹 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
56 opeq2 4825 . . . . 5 (𝑔 = 𝐺 → ⟨𝐸, 𝑔⟩ = ⟨𝐸, 𝐺⟩)
5756breq2d 5104 . . . 4 (𝑔 = 𝐺 → (𝐹 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝐺⟩))
5857anbi2d 630 . . 3 (𝑔 = 𝐺 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
59 opeq2 4825 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
6059breq2d 5104 . . . 4 (𝑔 = 𝐺 → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
6160anbi2d 630 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
6258, 613anbi12d 1439 . 2 (𝑔 = 𝐺 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
63 opeq2 4825 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
6463breq2d 5104 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
65 opeq2 4825 . . . . 5 ( = 𝐻 → ⟨𝐹, ⟩ = ⟨𝐹, 𝐻⟩)
6665breq2d 5104 . . . 4 ( = 𝐻 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
6764, 66anbi12d 632 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
68673anbi3d 1444 . 2 ( = 𝐻 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
69 fveq2 6822 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
70 df-ofs 35957 . 2 OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑒, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))}
7110, 21, 28, 34, 44, 55, 62, 68, 69, 70br8 35729 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ OuterFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4583   class class class wbr 5092  cfv 6482  cn 12128  𝔼cee 28833   Btwn cbtwn 28834  Cgrccgr 28835   OuterFiveSeg cofs 35956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-iota 6438  df-fv 6490  df-ofs 35957
This theorem is referenced by:  5segofs  35980  ofscom  35981  cgrextend  35982  segconeq  35984  ifscgr  36018  brofs2  36051
  Copyright terms: Public domain W3C validator