Detailed syntax breakdown of Definition df-ome
| Step | Hyp | Ref
| Expression |
| 1 | | come 46504 |
. 2
class
OutMeas |
| 2 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 4 | 3 | cdm 5685 |
. . . . . . . 8
class dom 𝑥 |
| 5 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 6 | | cpnf 11292 |
. . . . . . . . 9
class
+∞ |
| 7 | | cicc 13390 |
. . . . . . . . 9
class
[,] |
| 8 | 5, 6, 7 | co 7431 |
. . . . . . . 8
class
(0[,]+∞) |
| 9 | 4, 8, 3 | wf 6557 |
. . . . . . 7
wff 𝑥:dom 𝑥⟶(0[,]+∞) |
| 10 | 4 | cuni 4907 |
. . . . . . . . 9
class ∪ dom 𝑥 |
| 11 | 10 | cpw 4600 |
. . . . . . . 8
class 𝒫
∪ dom 𝑥 |
| 12 | 4, 11 | wceq 1540 |
. . . . . . 7
wff dom 𝑥 = 𝒫 ∪ dom 𝑥 |
| 13 | 9, 12 | wa 395 |
. . . . . 6
wff (𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) |
| 14 | | c0 4333 |
. . . . . . . 8
class
∅ |
| 15 | 14, 3 | cfv 6561 |
. . . . . . 7
class (𝑥‘∅) |
| 16 | 15, 5 | wceq 1540 |
. . . . . 6
wff (𝑥‘∅) =
0 |
| 17 | 13, 16 | wa 395 |
. . . . 5
wff ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) |
| 18 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 19 | 18 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 20 | 19, 3 | cfv 6561 |
. . . . . . . 8
class (𝑥‘𝑧) |
| 21 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 22 | 21 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 23 | 22, 3 | cfv 6561 |
. . . . . . . 8
class (𝑥‘𝑦) |
| 24 | | cle 11296 |
. . . . . . . 8
class
≤ |
| 25 | 20, 23, 24 | wbr 5143 |
. . . . . . 7
wff (𝑥‘𝑧) ≤ (𝑥‘𝑦) |
| 26 | 22 | cpw 4600 |
. . . . . . 7
class 𝒫
𝑦 |
| 27 | 25, 18, 26 | wral 3061 |
. . . . . 6
wff
∀𝑧 ∈
𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦) |
| 28 | 27, 21, 11 | wral 3061 |
. . . . 5
wff
∀𝑦 ∈
𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦) |
| 29 | 17, 28 | wa 395 |
. . . 4
wff (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) |
| 30 | | com 7887 |
. . . . . . 7
class
ω |
| 31 | | cdom 8983 |
. . . . . . 7
class
≼ |
| 32 | 22, 30, 31 | wbr 5143 |
. . . . . 6
wff 𝑦 ≼
ω |
| 33 | 22 | cuni 4907 |
. . . . . . . 8
class ∪ 𝑦 |
| 34 | 33, 3 | cfv 6561 |
. . . . . . 7
class (𝑥‘∪ 𝑦) |
| 35 | 3, 22 | cres 5687 |
. . . . . . . 8
class (𝑥 ↾ 𝑦) |
| 36 | | csumge0 46377 |
. . . . . . . 8
class
Σ^ |
| 37 | 35, 36 | cfv 6561 |
. . . . . . 7
class
(Σ^‘(𝑥 ↾ 𝑦)) |
| 38 | 34, 37, 24 | wbr 5143 |
. . . . . 6
wff (𝑥‘∪ 𝑦)
≤ (Σ^‘(𝑥 ↾ 𝑦)) |
| 39 | 32, 38 | wi 4 |
. . . . 5
wff (𝑦 ≼ ω → (𝑥‘∪ 𝑦)
≤ (Σ^‘(𝑥 ↾ 𝑦))) |
| 40 | 4 | cpw 4600 |
. . . . 5
class 𝒫
dom 𝑥 |
| 41 | 39, 21, 40 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦)
≤ (Σ^‘(𝑥 ↾ 𝑦))) |
| 42 | 29, 41 | wa 395 |
. . 3
wff ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤
(Σ^‘(𝑥 ↾ 𝑦)))) |
| 43 | 42, 2 | cab 2714 |
. 2
class {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤
(Σ^‘(𝑥 ↾ 𝑦))))} |
| 44 | 1, 43 | wceq 1540 |
1
wff OutMeas =
{𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤
(Σ^‘(𝑥 ↾ 𝑦))))} |