![]() |
Metamath
Proof Explorer Theorem List (p. 456 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fmul01 45501* | Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ (𝐿...𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) ⇒ ⊢ (𝜑 → (0 ≤ (𝐴‘𝐾) ∧ (𝐴‘𝐾) ≤ 1)) | ||
Theorem | fmulcl 45502* | If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ V) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑌) | ||
Theorem | fmuldfeqlem1 45503* | induction step for the proof of fmuldfeq 45504. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑓𝜑 & ⊢ Ⅎ𝑔𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) & ⊢ (𝜑 → (𝑁 + 1) ∈ (1...𝑀)) & ⊢ (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑁)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1))) | ||
Theorem | fmuldfeq 45504* | X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) | ||
Theorem | fmul01lt1lem1 45505* | Given a finite multiplication of values between 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (𝐵‘𝐿) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1lem2 45506* | Given a finite multiplication of values between 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝐴 = seq𝐿( · , 𝐵) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑀)) & ⊢ (𝜑 → (𝐵‘𝐽) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | fmul01lt1 45507* | Given a finite multiplication of values between 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
⊢ Ⅎ𝑖𝐵 & ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ 𝐴 = seq1( · , 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐵:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵‘𝑖)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐵‘𝑖) ≤ 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵‘𝑗) < 𝐸) ⇒ ⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) | ||
Theorem | cncfmptss 45508* | A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) | ||
Theorem | rrpsscn 45509 | The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ℝ+ ⊆ ℂ | ||
Theorem | mulc1cncfg 45510* | A version of mulc1cncf 24950 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) | ||
Theorem | infrglb 45511* | The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) | ||
Theorem | expcnfg 45512* | If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24972. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) | ||
Theorem | prodeq2ad 45513* | Equality deduction for product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) | ||
Theorem | fprodsplit1 45514* | Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) | ||
Theorem | fprodexp 45515* | Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵↑𝑁) = (∏𝑘 ∈ 𝐴 𝐵↑𝑁)) | ||
Theorem | fprodabs2 45516* | The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (abs‘∏𝑘 ∈ 𝐴 𝐵) = ∏𝑘 ∈ 𝐴 (abs‘𝐵)) | ||
Theorem | fprod0 45517* | A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐶 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | mccllem 45518* | * Induction step for mccl 45519. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m (𝐶 ∪ {𝐷}))) & ⊢ (𝜑 → ∀𝑏 ∈ (ℕ0 ↑m 𝐶)((!‘Σ𝑘 ∈ 𝐶 (𝑏‘𝑘)) / ∏𝑘 ∈ 𝐶 (!‘(𝑏‘𝑘))) ∈ ℕ) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵‘𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | mccl 45519* | A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ (ℕ0 ↑m 𝐴)) ⇒ ⊢ (𝜑 → ((!‘Σ𝑘 ∈ 𝐴 (𝐵‘𝑘)) / ∏𝑘 ∈ 𝐴 (!‘(𝐵‘𝑘))) ∈ ℕ) | ||
Theorem | fprodcnlem 45520* | A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.) Avoid ax-mulf 11264. (Revised by GG, 19-Apr-2025.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (𝐴 ∖ 𝑍)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝑍 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | fprodcn 45521* | A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | clim1fr1 45522* | A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | isumneg 45523* | Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 -𝐴 = -Σ𝑘 ∈ 𝑍 𝐴) | ||
Theorem | climrec 45524* | Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climmulf 45525* | A version of climmul 15679 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
Theorem | climexp 45526* | The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) | ||
Theorem | climinf 45527* | A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climsuselem1 45528* | The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝐼‘𝐾) ∈ (ℤ≥‘𝐾)) | ||
Theorem | climsuse 45529* | A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐼 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ≥‘((𝐼‘𝑘) + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | climrecf 45530* | A version of climrec 45524 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) | ||
Theorem | climneg 45531* | Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -𝐴) | ||
Theorem | climinff 45532* | A version of climinf 45527 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) | ||
Theorem | climdivf 45533* | Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 / 𝐵)) | ||
Theorem | climreeq 45534 | If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | ellimciota 45535* | An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) & ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | climaddf 45536* | A version of climadd 15678 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ Ⅎ𝑘𝐻 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
Theorem | mullimc 45537* | Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | ellimcabssub0 45538* | An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐷) ↔ 0 ∈ (𝐺 limℂ 𝐷))) | ||
Theorem | limcdm0 45539 | If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:∅⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) | ||
Theorem | islptre 45540* | An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ* ∀𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))) | ||
Theorem | limccog 45541 | Limit of the composition of two functions. If the limit of 𝐹 at 𝐴 is 𝐵 and the limit of 𝐺 at 𝐵 is 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐴 is 𝐶. With respect to limcco 25948 and limccnp 25946, here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → ran 𝐹 ⊆ (dom 𝐺 ∖ {𝐵})) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐺 ∘ 𝐹) limℂ 𝐴)) | ||
Theorem | limciccioolb 45542 | The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) = (𝐹 limℂ 𝐴)) | ||
Theorem | climf 45543* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15540, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | mullimcf 45544* | Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℂ) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) & ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | constlimc 45545* | Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) | ||
Theorem | rexlim2d 45546* | Inference removing two restricted quantifiers. Same as rexlimdvv 3218, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | idlimc 45547* | Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝑋)) | ||
Theorem | divcnvg 45548* | The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) | ||
Theorem | limcperiod 45549* | If 𝐹 is a periodic function with period 𝑇, the limit doesn't change if we shift the limiting point by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝐹 ↾ 𝐵) limℂ (𝐷 + 𝑇))) | ||
Theorem | limcrecl 45550 | If 𝐹 is a real-valued function, 𝐵 is a limit point of its domain, and the limit of 𝐹 at 𝐵 exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐿 ∈ ℝ) | ||
Theorem | sumnnodd 45551* | A series indexed by ℕ with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) | ||
Theorem | lptioo2 45552 | The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1 45553 | The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | elprn1 45554 | A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐵) → 𝐴 = 𝐶) | ||
Theorem | elprn2 45555 | A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | ||
Theorem | limcmptdm 45556* | The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℂ) | ||
Theorem | clim2f 45557* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15540. Similar to clim2 15550, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | limcicciooub 45558 | The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) | ||
Theorem | ltmod 45559 | A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,)𝐴)) ⇒ ⊢ (𝜑 → (𝐶 mod 𝐵) < (𝐴 mod 𝐵)) | ||
Theorem | islpcn 45560* | A characterization for a limit point for the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑃 ∈ ((limPt‘(TopOpen‘ℂfld))‘𝑆) ↔ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ (𝑆 ∖ {𝑃})(abs‘(𝑥 − 𝑃)) < 𝑒)) | ||
Theorem | lptre2pt 45561* | If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (abs‘(𝑥 − 𝑦)) < 𝐸)) | ||
Theorem | limsupre 45562* | If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐵, ℝ*, < ) = +∞) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) | ||
Theorem | limcresiooub 45563 | The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) limℂ 𝐶)) | ||
Theorem | limcresioolb 45564 | The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 < 𝐶) & ⊢ (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) limℂ 𝐵) = ((𝐹 ↾ (𝐵(,)𝐷)) limℂ 𝐵)) | ||
Theorem | limcleqr 45565 | If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 = 𝑅) ⇒ ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | ||
Theorem | lptioo2cn 45566 | The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | lptioo1cn 45567 | The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵))) | ||
Theorem | neglimc 45568* | Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) ⇒ ⊢ (𝜑 → -𝐶 ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | addlimc 45569* | Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | 0ellimcdiv 45570* | If the numerator converges to 0 and the denominator converges to a nonzero number, then the fraction converges to 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ∈ (𝐺 limℂ 𝐸)) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → 0 ∈ (𝐻 limℂ 𝐸)) | ||
Theorem | clim2cf 45571* | Express the predicate 𝐹 converges to 𝐴. Similar to clim2 15550, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
Theorem | limclner 45572 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) & ⊢ (𝜑 → 𝐿 ≠ 𝑅) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) | ||
Theorem | sublimc 45573* | Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐼 ∈ (𝐺 limℂ 𝐷)) ⇒ ⊢ (𝜑 → (𝐸 − 𝐼) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | reclimc 45574* | Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐶) ∈ (𝐺 limℂ 𝐷)) | ||
Theorem | clim0cf 45575* | Express the predicate 𝐹 converges to 0. Similar to clim 15540, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝑥)) | ||
Theorem | limclr 45576 | For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) & ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) ⇒ ⊢ (𝜑 → (((𝐹 limℂ 𝐵) ≠ ∅ ↔ 𝐿 = 𝑅) ∧ (𝐿 = 𝑅 → 𝐿 ∈ (𝐹 limℂ 𝐵)))) | ||
Theorem | divlimc 45577* | Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋 / 𝑌) ∈ (𝐻 limℂ 𝐷)) | ||
Theorem | expfac 45578* | Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ 0) | ||
Theorem | climconstmpt 45579* | A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐴) | ||
Theorem | climresmpt 45580* | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ 𝐺 = (𝑥 ∈ (ℤ≥‘𝑁) ↦ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 ⇝ 𝐵 ↔ 𝐹 ⇝ 𝐵)) | ||
Theorem | climsubmpt 45581* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐷) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐷)) | ||
Theorem | climsubc2mpt 45582* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴) ⇝ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐶 − 𝐵)) | ||
Theorem | climsubc1mpt 45583* | Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 − 𝐵)) ⇝ (𝐴 − 𝐶)) | ||
Theorem | fnlimfv 45584* | The value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
Theorem | climreclf 45585* | The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | climeldmeq 45586* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) | ||
Theorem | climf2 45587* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. Similar to clim 15540, but without the disjoint var constraint 𝜑𝑘 and 𝐹𝑘. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | fnlimcnv 45588* | The sequence of function values converges to the value of the limit function 𝐺 at any point of its domain 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐹 & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) | ||
Theorem | climeldmeqmpt 45589* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
Theorem | climfveq 45590* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | ||
Theorem | clim2f2 45591* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 15540. Similar to clim2 15550, but without the disjoint var constraint 𝐹𝑘. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑥)))) | ||
Theorem | climfveqmpt 45592* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = ( ⇝ ‘(𝑘 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | climd 45593* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
Theorem | clim2d 45594* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝑋)) | ||
Theorem | fnlimfvre 45595* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | ||
Theorem | allbutfifvre 45596* | Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) | ||
Theorem | climleltrp 45597* | The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) | ||
Theorem | fnlimfvre2 45598* | The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ ℝ) | ||
Theorem | fnlimf 45599* | The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺:𝐷⟶ℝ) | ||
Theorem | fnlimabslt 45600* | A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |