Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isome Structured version   Visualization version   GIF version

Theorem isome 43922
Description: Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
isome (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Distinct variable group:   𝑦,𝑂,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧)

Proof of Theorem isome
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝑂𝑥 = 𝑂)
2 dmeq 5801 . . . . . . 7 (𝑥 = 𝑂 → dom 𝑥 = dom 𝑂)
31, 2feq12d 6572 . . . . . 6 (𝑥 = 𝑂 → (𝑥:dom 𝑥⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
42unieqd 4850 . . . . . . . 8 (𝑥 = 𝑂 dom 𝑥 = dom 𝑂)
54pweqd 4549 . . . . . . 7 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
62, 5eqeq12d 2754 . . . . . 6 (𝑥 = 𝑂 → (dom 𝑥 = 𝒫 dom 𝑥 ↔ dom 𝑂 = 𝒫 dom 𝑂))
73, 6anbi12d 630 . . . . 5 (𝑥 = 𝑂 → ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ↔ (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)))
8 fveq1 6755 . . . . . 6 (𝑥 = 𝑂 → (𝑥‘∅) = (𝑂‘∅))
98eqeq1d 2740 . . . . 5 (𝑥 = 𝑂 → ((𝑥‘∅) = 0 ↔ (𝑂‘∅) = 0))
107, 9anbi12d 630 . . . 4 (𝑥 = 𝑂 → (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ↔ ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)))
11 fveq1 6755 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑧) = (𝑂𝑧))
12 fveq1 6755 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
1311, 12breq12d 5083 . . . . . 6 (𝑥 = 𝑂 → ((𝑥𝑧) ≤ (𝑥𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝑦)))
1413ralbidv 3120 . . . . 5 (𝑥 = 𝑂 → (∀𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
155, 14raleqbidv 3327 . . . 4 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
1610, 15anbi12d 630 . . 3 (𝑥 = 𝑂 → ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ↔ (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))))
172pweqd 4549 . . . 4 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
18 fveq1 6755 . . . . . 6 (𝑥 = 𝑂 → (𝑥 𝑦) = (𝑂 𝑦))
19 reseq1 5874 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
2019fveq2d 6760 . . . . . 6 (𝑥 = 𝑂 → (Σ^‘(𝑥𝑦)) = (Σ^‘(𝑂𝑦)))
2118, 20breq12d 5083 . . . . 5 (𝑥 = 𝑂 → ((𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)) ↔ (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
2221imbi2d 340 . . . 4 (𝑥 = 𝑂 → ((𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2317, 22raleqbidv 3327 . . 3 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2416, 23anbi12d 630 . 2 (𝑥 = 𝑂 → (((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)))) ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
25 df-ome 43918 . 2 OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
2624, 25elab2g 3604 1 (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  c0 4253  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937  cle 10941  [,]cicc 13011  Σ^csumge0 43790  OutMeascome 43917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ome 43918
This theorem is referenced by:  omef  43924  ome0  43925  omessle  43926  omedm  43927  omeunile  43933  0ome  43957  isomennd  43959
  Copyright terms: Public domain W3C validator