Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isome Structured version   Visualization version   GIF version

Theorem isome 45210
Description: Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
isome (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Distinct variable group:   𝑦,𝑂,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧)

Proof of Theorem isome
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝑂𝑥 = 𝑂)
2 dmeq 5904 . . . . . . 7 (𝑥 = 𝑂 → dom 𝑥 = dom 𝑂)
31, 2feq12d 6706 . . . . . 6 (𝑥 = 𝑂 → (𝑥:dom 𝑥⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
42unieqd 4923 . . . . . . . 8 (𝑥 = 𝑂 dom 𝑥 = dom 𝑂)
54pweqd 4620 . . . . . . 7 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
62, 5eqeq12d 2749 . . . . . 6 (𝑥 = 𝑂 → (dom 𝑥 = 𝒫 dom 𝑥 ↔ dom 𝑂 = 𝒫 dom 𝑂))
73, 6anbi12d 632 . . . . 5 (𝑥 = 𝑂 → ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ↔ (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)))
8 fveq1 6891 . . . . . 6 (𝑥 = 𝑂 → (𝑥‘∅) = (𝑂‘∅))
98eqeq1d 2735 . . . . 5 (𝑥 = 𝑂 → ((𝑥‘∅) = 0 ↔ (𝑂‘∅) = 0))
107, 9anbi12d 632 . . . 4 (𝑥 = 𝑂 → (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ↔ ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)))
11 fveq1 6891 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑧) = (𝑂𝑧))
12 fveq1 6891 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
1311, 12breq12d 5162 . . . . . 6 (𝑥 = 𝑂 → ((𝑥𝑧) ≤ (𝑥𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝑦)))
1413ralbidv 3178 . . . . 5 (𝑥 = 𝑂 → (∀𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
155, 14raleqbidv 3343 . . . 4 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
1610, 15anbi12d 632 . . 3 (𝑥 = 𝑂 → ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ↔ (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))))
172pweqd 4620 . . . 4 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
18 fveq1 6891 . . . . . 6 (𝑥 = 𝑂 → (𝑥 𝑦) = (𝑂 𝑦))
19 reseq1 5976 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
2019fveq2d 6896 . . . . . 6 (𝑥 = 𝑂 → (Σ^‘(𝑥𝑦)) = (Σ^‘(𝑂𝑦)))
2118, 20breq12d 5162 . . . . 5 (𝑥 = 𝑂 → ((𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)) ↔ (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
2221imbi2d 341 . . . 4 (𝑥 = 𝑂 → ((𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2317, 22raleqbidv 3343 . . 3 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2416, 23anbi12d 632 . 2 (𝑥 = 𝑂 → (((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)))) ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
25 df-ome 45206 . 2 OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
2624, 25elab2g 3671 1 (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  c0 4323  𝒫 cpw 4603   cuni 4909   class class class wbr 5149  dom cdm 5677  cres 5679  wf 6540  cfv 6544  (class class class)co 7409  ωcom 7855  cdom 8937  0cc0 11110  +∞cpnf 11245  cle 11249  [,]cicc 13327  Σ^csumge0 45078  OutMeascome 45205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ome 45206
This theorem is referenced by:  omef  45212  ome0  45213  omessle  45214  omedm  45215  omeunile  45221  0ome  45245  isomennd  45247
  Copyright terms: Public domain W3C validator