MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ons Structured version   Visualization version   GIF version

Definition df-ons 28293
Description: Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
df-ons Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}

Detailed syntax breakdown of Definition df-ons
StepHypRef Expression
1 cons 28292 . 2 class Ons
2 vx . . . . . 6 setvar 𝑥
32cv 1536 . . . . 5 class 𝑥
4 cright 27903 . . . . 5 class R
53, 4cfv 6573 . . . 4 class ( R ‘𝑥)
6 c0 4352 . . . 4 class
75, 6wceq 1537 . . 3 wff ( R ‘𝑥) = ∅
8 csur 27702 . . 3 class No
97, 2, 8crab 3443 . 2 class {𝑥 No ∣ ( R ‘𝑥) = ∅}
101, 9wceq 1537 1 wff Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
Colors of variables: wff setvar class
This definition is referenced by:  elons  28294  onssno  28295
  Copyright terms: Public domain W3C validator