![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ons | Structured version Visualization version GIF version |
Description: Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
df-ons | ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cons 27917 | . 2 class Ons | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑥 |
4 | cright 27578 | . . . . 5 class R | |
5 | 3, 4 | cfv 6542 | . . . 4 class ( R ‘𝑥) |
6 | c0 4321 | . . . 4 class ∅ | |
7 | 5, 6 | wceq 1539 | . . 3 wff ( R ‘𝑥) = ∅ |
8 | csur 27379 | . . 3 class No | |
9 | 7, 2, 8 | crab 3430 | . 2 class {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
10 | 1, 9 | wceq 1539 | 1 wff Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
Colors of variables: wff setvar class |
This definition is referenced by: elons 27919 onssno 27920 |
Copyright terms: Public domain | W3C validator |