| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ons | Structured version Visualization version GIF version | ||
| Description: Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from [Conway] p. 27. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| df-ons | ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cons 28209 | . 2 class Ons | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | cright 27811 | . . . . 5 class R | |
| 5 | 3, 4 | cfv 6536 | . . . 4 class ( R ‘𝑥) |
| 6 | c0 4313 | . . . 4 class ∅ | |
| 7 | 5, 6 | wceq 1540 | . . 3 wff ( R ‘𝑥) = ∅ |
| 8 | csur 27608 | . . 3 class No | |
| 9 | 7, 2, 8 | crab 3420 | . 2 class {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
| 10 | 1, 9 | wceq 1540 | 1 wff Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elons 28211 onssno 28212 |
| Copyright terms: Public domain | W3C validator |