![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssno | Structured version Visualization version GIF version |
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
onssno | ⊢ Ons ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ons 27918 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
2 | ssrab2 4076 | . 2 ⊢ {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} ⊆ No | |
3 | 1, 2 | eqsstri 4015 | 1 ⊢ Ons ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3430 ⊆ wss 3947 ∅c0 4321 ‘cfv 6542 No csur 27379 R cright 27578 Onscons 27917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-ons 27918 |
This theorem is referenced by: onsno 27921 |
Copyright terms: Public domain | W3C validator |