| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssno | Structured version Visualization version GIF version | ||
| Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| onssno | ⊢ Ons ⊆ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ons 28189 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
| 2 | ssrab2 4027 | . 2 ⊢ {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} ⊆ No | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ Ons ⊆ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3395 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 No csur 27578 R cright 27787 Onscons 28188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-ons 28189 |
| This theorem is referenced by: onsno 28192 onscutlt 28201 onsiso 28205 bdayon 28209 onsfi 28283 |
| Copyright terms: Public domain | W3C validator |