MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssno Structured version   Visualization version   GIF version

Theorem onssno 28248
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onssno Ons No

Proof of Theorem onssno
StepHypRef Expression
1 df-ons 28246 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
2 ssrab2 4076 . 2 {𝑥 No ∣ ( R ‘𝑥) = ∅} ⊆ No
31, 2eqsstri 4014 1 Ons No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  {crab 3419  wss 3947  c0 4325  cfv 6554   No csur 27669   R cright 27870  Onscons 28245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-ss 3964  df-ons 28246
This theorem is referenced by:  onsno  28249
  Copyright terms: Public domain W3C validator