MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssno Structured version   Visualization version   GIF version

Theorem onssno 28191
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onssno Ons No

Proof of Theorem onssno
StepHypRef Expression
1 df-ons 28189 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
2 ssrab2 4027 . 2 {𝑥 No ∣ ( R ‘𝑥) = ∅} ⊆ No
31, 2eqsstri 3976 1 Ons No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {crab 3395  wss 3897  c0 4280  cfv 6481   No csur 27578   R cright 27787  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914  df-ons 28189
This theorem is referenced by:  onsno  28192  onscutlt  28201  onsiso  28205  bdayon  28209  onsfi  28283
  Copyright terms: Public domain W3C validator