MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssno Structured version   Visualization version   GIF version

Theorem onssno 28295
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onssno Ons No

Proof of Theorem onssno
StepHypRef Expression
1 df-ons 28293 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
2 ssrab2 4103 . 2 {𝑥 No ∣ ( R ‘𝑥) = ∅} ⊆ No
31, 2eqsstri 4043 1 Ons No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {crab 3443  wss 3976  c0 4352  cfv 6573   No csur 27702   R cright 27903  Onscons 28292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-ons 28293
This theorem is referenced by:  onsno  28296
  Copyright terms: Public domain W3C validator