| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssno | Structured version Visualization version GIF version | ||
| Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| onssno | ⊢ Ons ⊆ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ons 28210 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
| 2 | ssrab2 4060 | . 2 ⊢ {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} ⊆ No | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ Ons ⊆ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3420 ⊆ wss 3931 ∅c0 4313 ‘cfv 6536 No csur 27608 R cright 27811 Onscons 28209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-ons 28210 |
| This theorem is referenced by: onsno 28213 onscutlt 28222 onsiso 28226 bdayon 28230 onsfi 28304 |
| Copyright terms: Public domain | W3C validator |