MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssno Structured version   Visualization version   GIF version

Theorem onssno 27920
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onssno Ons No

Proof of Theorem onssno
StepHypRef Expression
1 df-ons 27918 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
2 ssrab2 4076 . 2 {𝑥 No ∣ ( R ‘𝑥) = ∅} ⊆ No
31, 2eqsstri 4015 1 Ons No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {crab 3430  wss 3947  c0 4321  cfv 6542   No csur 27379   R cright 27578  Onscons 27917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964  df-ons 27918
This theorem is referenced by:  onsno  27921
  Copyright terms: Public domain W3C validator