![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssno | Structured version Visualization version GIF version |
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
onssno | ⊢ Ons ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ons 28246 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
2 | ssrab2 4076 | . 2 ⊢ {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} ⊆ No | |
3 | 1, 2 | eqsstri 4014 | 1 ⊢ Ons ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 {crab 3419 ⊆ wss 3947 ∅c0 4325 ‘cfv 6554 No csur 27669 R cright 27870 Onscons 28245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-ss 3964 df-ons 28246 |
This theorem is referenced by: onsno 28249 |
Copyright terms: Public domain | W3C validator |