MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssno Structured version   Visualization version   GIF version

Theorem onssno 28195
Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
onssno Ons No

Proof of Theorem onssno
StepHypRef Expression
1 df-ons 28193 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
2 ssrab2 4039 . 2 {𝑥 No ∣ ( R ‘𝑥) = ∅} ⊆ No
31, 2eqsstri 3990 1 Ons No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3402  wss 3911  c0 4292  cfv 6499   No csur 27584   R cright 27791  Onscons 28192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-ss 3928  df-ons 28193
This theorem is referenced by:  onsno  28196  onscutlt  28205  onsiso  28209  bdayon  28213  onsfi  28287
  Copyright terms: Public domain W3C validator