![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elons | Structured version Visualization version GIF version |
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
elons | ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6896 | . . 3 ⊢ (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴)) | |
2 | 1 | eqeq1d 2727 | . 2 ⊢ (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅)) |
3 | df-ons 28195 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
4 | 2, 3 | elrab2 3682 | 1 ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∅c0 4322 ‘cfv 6549 No csur 27618 R cright 27819 Onscons 28194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ons 28195 |
This theorem is referenced by: 0ons 28199 1ons 28200 elons2 28201 sltonold 28203 onscutleft 28205 |
Copyright terms: Public domain | W3C validator |