![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elons | Structured version Visualization version GIF version |
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
Ref | Expression |
---|---|
elons | ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴)) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅)) |
3 | df-ons 28293 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
4 | 2, 3 | elrab2 3711 | 1 ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 ‘cfv 6573 No csur 27702 R cright 27903 Onscons 28292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ons 28293 |
This theorem is referenced by: 0ons 28297 1ons 28298 elons2 28299 sltonold 28301 onscutleft 28303 |
Copyright terms: Public domain | W3C validator |