MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons Structured version   Visualization version   GIF version

Theorem elons 27917
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
elons (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))

Proof of Theorem elons
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . 3 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
21eqeq1d 2732 . 2 (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅))
3 df-ons 27916 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
42, 3elrab2 3687 1 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wcel 2104  c0 4323  cfv 6544   No csur 27377   R cright 27576  Onscons 27915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ons 27916
This theorem is referenced by:  0ons  27920  1ons  27921  elons2  27922  sltonold  27924  onscutleft  27926
  Copyright terms: Public domain W3C validator