MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons Structured version   Visualization version   GIF version

Theorem elons 28294
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
elons (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))

Proof of Theorem elons
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . 3 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
21eqeq1d 2742 . 2 (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅))
3 df-ons 28293 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
42, 3elrab2 3711 1 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  c0 4352  cfv 6573   No csur 27702   R cright 27903  Onscons 28292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ons 28293
This theorem is referenced by:  0ons  28297  1ons  28298  elons2  28299  sltonold  28301  onscutleft  28303
  Copyright terms: Public domain W3C validator