| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elons | Structured version Visualization version GIF version | ||
| Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| elons | ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴)) | |
| 2 | 1 | eqeq1d 2733 | . 2 ⊢ (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅)) |
| 3 | df-ons 28189 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
| 4 | 2, 3 | elrab2 3645 | 1 ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 ‘cfv 6481 No csur 27578 R cright 27787 Onscons 28188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ons 28189 |
| This theorem is referenced by: 0ons 28193 1ons 28194 elons2 28195 onsleft 28197 sltonold 28198 onscutleft 28200 onscutlt 28201 |
| Copyright terms: Public domain | W3C validator |