MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons Structured version   Visualization version   GIF version

Theorem elons 28161
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
elons (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))

Proof of Theorem elons
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6865 . . 3 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
21eqeq1d 2732 . 2 (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅))
3 df-ons 28160 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
42, 3elrab2 3670 1 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  c0 4304  cfv 6519   No csur 27558   R cright 27761  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ons 28160
This theorem is referenced by:  0ons  28164  1ons  28165  elons2  28166  onsleft  28168  sltonold  28169  onscutleft  28171  onscutlt  28172
  Copyright terms: Public domain W3C validator