MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons Structured version   Visualization version   GIF version

Theorem elons 28196
Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.)
Assertion
Ref Expression
elons (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))

Proof of Theorem elons
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . 3 (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴))
21eqeq1d 2727 . 2 (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅))
3 df-ons 28195 . 2 Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
42, 3elrab2 3682 1 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  c0 4322  cfv 6549   No csur 27618   R cright 27819  Onscons 28194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ons 28195
This theorem is referenced by:  0ons  28199  1ons  28200  elons2  28201  sltonold  28203  onscutleft  28205
  Copyright terms: Public domain W3C validator