| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elons | Structured version Visualization version GIF version | ||
| Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025.) |
| Ref | Expression |
|---|---|
| elons | ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6865 | . . 3 ⊢ (𝑥 = 𝐴 → ( R ‘𝑥) = ( R ‘𝐴)) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝑥 = 𝐴 → (( R ‘𝑥) = ∅ ↔ ( R ‘𝐴) = ∅)) |
| 3 | df-ons 28160 | . 2 ⊢ Ons = {𝑥 ∈ No ∣ ( R ‘𝑥) = ∅} | |
| 4 | 2, 3 | elrab2 3670 | 1 ⊢ (𝐴 ∈ Ons ↔ (𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4304 ‘cfv 6519 No csur 27558 R cright 27761 Onscons 28159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-ons 28160 |
| This theorem is referenced by: 0ons 28164 1ons 28165 elons2 28166 onsleft 28168 sltonold 28169 onscutleft 28171 onscutlt 28172 |
| Copyright terms: Public domain | W3C validator |