Detailed syntax breakdown of Definition df-oppc
Step | Hyp | Ref
| Expression |
1 | | coppc 17337 |
. 2
class
oppCat |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cvv 3422 |
. . 3
class
V |
4 | 2 | cv 1538 |
. . . . 5
class 𝑓 |
5 | | cnx 16822 |
. . . . . . 7
class
ndx |
6 | | chom 16899 |
. . . . . . 7
class
Hom |
7 | 5, 6 | cfv 6418 |
. . . . . 6
class (Hom
‘ndx) |
8 | 4, 6 | cfv 6418 |
. . . . . . 7
class (Hom
‘𝑓) |
9 | 8 | ctpos 8012 |
. . . . . 6
class tpos (Hom
‘𝑓) |
10 | 7, 9 | cop 4564 |
. . . . 5
class
〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉 |
11 | | csts 16792 |
. . . . 5
class
sSet |
12 | 4, 10, 11 | co 7255 |
. . . 4
class (𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉) |
13 | | cco 16900 |
. . . . . 6
class
comp |
14 | 5, 13 | cfv 6418 |
. . . . 5
class
(comp‘ndx) |
15 | | vu |
. . . . . 6
setvar 𝑢 |
16 | | vz |
. . . . . 6
setvar 𝑧 |
17 | | cbs 16840 |
. . . . . . . 8
class
Base |
18 | 4, 17 | cfv 6418 |
. . . . . . 7
class
(Base‘𝑓) |
19 | 18, 18 | cxp 5578 |
. . . . . 6
class
((Base‘𝑓)
× (Base‘𝑓)) |
20 | 16 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
21 | 15 | cv 1538 |
. . . . . . . . . 10
class 𝑢 |
22 | | c2nd 7803 |
. . . . . . . . . 10
class
2nd |
23 | 21, 22 | cfv 6418 |
. . . . . . . . 9
class
(2nd ‘𝑢) |
24 | 20, 23 | cop 4564 |
. . . . . . . 8
class
〈𝑧,
(2nd ‘𝑢)〉 |
25 | | c1st 7802 |
. . . . . . . . 9
class
1st |
26 | 21, 25 | cfv 6418 |
. . . . . . . 8
class
(1st ‘𝑢) |
27 | 4, 13 | cfv 6418 |
. . . . . . . 8
class
(comp‘𝑓) |
28 | 24, 26, 27 | co 7255 |
. . . . . . 7
class
(〈𝑧,
(2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)) |
29 | 28 | ctpos 8012 |
. . . . . 6
class tpos
(〈𝑧, (2nd
‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)) |
30 | 15, 16, 19, 18, 29 | cmpo 7257 |
. . . . 5
class (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢))) |
31 | 14, 30 | cop 4564 |
. . . 4
class
〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉 |
32 | 12, 31, 11 | co 7255 |
. . 3
class ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉) |
33 | 2, 3, 32 | cmpt 5153 |
. 2
class (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |
34 | 1, 33 | wceq 1539 |
1
wff oppCat =
(𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |