Detailed syntax breakdown of Definition df-oppc
| Step | Hyp | Ref
| Expression |
| 1 | | coppc 17754 |
. 2
class
oppCat |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . 5
class 𝑓 |
| 5 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 6 | | chom 17308 |
. . . . . . 7
class
Hom |
| 7 | 5, 6 | cfv 6561 |
. . . . . 6
class (Hom
‘ndx) |
| 8 | 4, 6 | cfv 6561 |
. . . . . . 7
class (Hom
‘𝑓) |
| 9 | 8 | ctpos 8250 |
. . . . . 6
class tpos (Hom
‘𝑓) |
| 10 | 7, 9 | cop 4632 |
. . . . 5
class
〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉 |
| 11 | | csts 17200 |
. . . . 5
class
sSet |
| 12 | 4, 10, 11 | co 7431 |
. . . 4
class (𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉) |
| 13 | | cco 17309 |
. . . . . 6
class
comp |
| 14 | 5, 13 | cfv 6561 |
. . . . 5
class
(comp‘ndx) |
| 15 | | vu |
. . . . . 6
setvar 𝑢 |
| 16 | | vz |
. . . . . 6
setvar 𝑧 |
| 17 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 18 | 4, 17 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑓) |
| 19 | 18, 18 | cxp 5683 |
. . . . . 6
class
((Base‘𝑓)
× (Base‘𝑓)) |
| 20 | 16 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 21 | 15 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 22 | | c2nd 8013 |
. . . . . . . . . 10
class
2nd |
| 23 | 21, 22 | cfv 6561 |
. . . . . . . . 9
class
(2nd ‘𝑢) |
| 24 | 20, 23 | cop 4632 |
. . . . . . . 8
class
〈𝑧,
(2nd ‘𝑢)〉 |
| 25 | | c1st 8012 |
. . . . . . . . 9
class
1st |
| 26 | 21, 25 | cfv 6561 |
. . . . . . . 8
class
(1st ‘𝑢) |
| 27 | 4, 13 | cfv 6561 |
. . . . . . . 8
class
(comp‘𝑓) |
| 28 | 24, 26, 27 | co 7431 |
. . . . . . 7
class
(〈𝑧,
(2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)) |
| 29 | 28 | ctpos 8250 |
. . . . . 6
class tpos
(〈𝑧, (2nd
‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)) |
| 30 | 15, 16, 19, 18, 29 | cmpo 7433 |
. . . . 5
class (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢))) |
| 31 | 14, 30 | cop 4632 |
. . . 4
class
〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉 |
| 32 | 12, 31, 11 | co 7431 |
. . 3
class ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉) |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |
| 34 | 1, 33 | wceq 1540 |
1
wff oppCat =
(𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑓)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |