Step | Hyp | Ref
| Expression |
1 | | coppc 17659 |
. 2
class
oppCat |
2 | | vf |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | 2 | cv 1540 |
. . . . 5
class π |
5 | | cnx 17130 |
. . . . . . 7
class
ndx |
6 | | chom 17212 |
. . . . . . 7
class
Hom |
7 | 5, 6 | cfv 6543 |
. . . . . 6
class (Hom
βndx) |
8 | 4, 6 | cfv 6543 |
. . . . . . 7
class (Hom
βπ) |
9 | 8 | ctpos 8212 |
. . . . . 6
class tpos (Hom
βπ) |
10 | 7, 9 | cop 4634 |
. . . . 5
class
β¨(Hom βndx), tpos (Hom βπ)β© |
11 | | csts 17100 |
. . . . 5
class
sSet |
12 | 4, 10, 11 | co 7411 |
. . . 4
class (π sSet β¨(Hom βndx),
tpos (Hom βπ)β©) |
13 | | cco 17213 |
. . . . . 6
class
comp |
14 | 5, 13 | cfv 6543 |
. . . . 5
class
(compβndx) |
15 | | vu |
. . . . . 6
setvar π’ |
16 | | vz |
. . . . . 6
setvar π§ |
17 | | cbs 17148 |
. . . . . . . 8
class
Base |
18 | 4, 17 | cfv 6543 |
. . . . . . 7
class
(Baseβπ) |
19 | 18, 18 | cxp 5674 |
. . . . . 6
class
((Baseβπ)
Γ (Baseβπ)) |
20 | 16 | cv 1540 |
. . . . . . . . 9
class π§ |
21 | 15 | cv 1540 |
. . . . . . . . . 10
class π’ |
22 | | c2nd 7976 |
. . . . . . . . . 10
class
2nd |
23 | 21, 22 | cfv 6543 |
. . . . . . . . 9
class
(2nd βπ’) |
24 | 20, 23 | cop 4634 |
. . . . . . . 8
class
β¨π§,
(2nd βπ’)β© |
25 | | c1st 7975 |
. . . . . . . . 9
class
1st |
26 | 21, 25 | cfv 6543 |
. . . . . . . 8
class
(1st βπ’) |
27 | 4, 13 | cfv 6543 |
. . . . . . . 8
class
(compβπ) |
28 | 24, 26, 27 | co 7411 |
. . . . . . 7
class
(β¨π§,
(2nd βπ’)β©(compβπ)(1st βπ’)) |
29 | 28 | ctpos 8212 |
. . . . . 6
class tpos
(β¨π§, (2nd
βπ’)β©(compβπ)(1st βπ’)) |
30 | 15, 16, 19, 18, 29 | cmpo 7413 |
. . . . 5
class (π’ β ((Baseβπ) Γ (Baseβπ)), π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’))) |
31 | 14, 30 | cop 4634 |
. . . 4
class
β¨(compβndx), (π’ β ((Baseβπ) Γ (Baseβπ)), π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’)))β© |
32 | 12, 31, 11 | co 7411 |
. . 3
class ((π sSet β¨(Hom βndx),
tpos (Hom βπ)β©)
sSet β¨(compβndx), (π’ β ((Baseβπ) Γ (Baseβπ)), π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’)))β©) |
33 | 2, 3, 32 | cmpt 5231 |
. 2
class (π β V β¦ ((π sSet β¨(Hom βndx),
tpos (Hom βπ)β©)
sSet β¨(compβndx), (π’ β ((Baseβπ) Γ (Baseβπ)), π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’)))β©)) |
34 | 1, 33 | wceq 1541 |
1
wff oppCat =
(π β V β¦ ((π sSet β¨(Hom βndx),
tpos (Hom βπ)β©)
sSet β¨(compβndx), (π’ β ((Baseβπ) Γ (Baseβπ)), π§ β (Baseβπ) β¦ tpos (β¨π§, (2nd βπ’)β©(compβπ)(1st βπ’)))β©)) |