MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oppc Structured version   Visualization version   GIF version

Definition df-oppc 17660
Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of [Adamek] p. 25. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-oppc oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩))
Distinct variable group:   𝑒,𝑓,𝑧

Detailed syntax breakdown of Definition df-oppc
StepHypRef Expression
1 coppc 17659 . 2 class oppCat
2 vf . . 3 setvar 𝑓
3 cvv 3474 . . 3 class V
42cv 1540 . . . . 5 class 𝑓
5 cnx 17130 . . . . . . 7 class ndx
6 chom 17212 . . . . . . 7 class Hom
75, 6cfv 6543 . . . . . 6 class (Hom β€˜ndx)
84, 6cfv 6543 . . . . . . 7 class (Hom β€˜π‘“)
98ctpos 8212 . . . . . 6 class tpos (Hom β€˜π‘“)
107, 9cop 4634 . . . . 5 class ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩
11 csts 17100 . . . . 5 class sSet
124, 10, 11co 7411 . . . 4 class (𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩)
13 cco 17213 . . . . . 6 class comp
145, 13cfv 6543 . . . . 5 class (compβ€˜ndx)
15 vu . . . . . 6 setvar 𝑒
16 vz . . . . . 6 setvar 𝑧
17 cbs 17148 . . . . . . . 8 class Base
184, 17cfv 6543 . . . . . . 7 class (Baseβ€˜π‘“)
1918, 18cxp 5674 . . . . . 6 class ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“))
2016cv 1540 . . . . . . . . 9 class 𝑧
2115cv 1540 . . . . . . . . . 10 class 𝑒
22 c2nd 7976 . . . . . . . . . 10 class 2nd
2321, 22cfv 6543 . . . . . . . . 9 class (2nd β€˜π‘’)
2420, 23cop 4634 . . . . . . . 8 class βŸ¨π‘§, (2nd β€˜π‘’)⟩
25 c1st 7975 . . . . . . . . 9 class 1st
2621, 25cfv 6543 . . . . . . . 8 class (1st β€˜π‘’)
274, 13cfv 6543 . . . . . . . 8 class (compβ€˜π‘“)
2824, 26, 27co 7411 . . . . . . 7 class (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’))
2928ctpos 8212 . . . . . 6 class tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’))
3015, 16, 19, 18, 29cmpo 7413 . . . . 5 class (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))
3114, 30cop 4634 . . . 4 class ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩
3212, 31, 11co 7411 . . 3 class ((𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩)
332, 3, 32cmpt 5231 . 2 class (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩))
341, 33wceq 1541 1 wff oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘“)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘“) Γ— (Baseβ€˜π‘“)), 𝑧 ∈ (Baseβ€˜π‘“) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘“)(1st β€˜π‘’)))⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oppcval  17661  oppccatf  17678
  Copyright terms: Public domain W3C validator