| Metamath
Proof Explorer Theorem List (p. 177 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mrissmrcd 17601 | In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd 17588, and so are equal by mrieqv2d 17600.) (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 = 𝑇) | ||
| Theorem | mrissmrid 17602 | In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐼) | ||
| Theorem | mreexd 17603* | In a Moore system, the closure operator is said to have the exchange property if, for all elements 𝑦 and 𝑧 of the base set and subsets 𝑆 of the base set such that 𝑧 is in the closure of (𝑆 ∪ {𝑦}) but not in the closure of 𝑆, 𝑦 is in the closure of (𝑆 ∪ {𝑧}) (Definition 3.1.9 in [FaureFrolicher] p. 57 to 58.) This theorem allows to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))) | ||
| Theorem | mreexmrid 17604* | In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in [FaureFrolicher] p. 84. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘𝑆)) ⇒ ⊢ (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼) | ||
| Theorem | mreexexlemd 17605* | This lemma is used to generate substitution instances of the induction hypothesis in mreexexd 17609. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ≈ 𝐾 ∨ 𝐺 ≈ 𝐾)) & ⊢ (𝜑 → ∀𝑡∀𝑢 ∈ 𝒫 (𝑋 ∖ 𝑡)∀𝑣 ∈ 𝒫 (𝑋 ∖ 𝑡)(((𝑢 ≈ 𝐾 ∨ 𝑣 ≈ 𝐾) ∧ 𝑢 ⊆ (𝑁‘(𝑣 ∪ 𝑡)) ∧ (𝑢 ∪ 𝑡) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑣(𝑢 ≈ 𝑖 ∧ (𝑖 ∪ 𝑡) ∈ 𝐼))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
| Theorem | mreexexlem2d 17606* | Used in mreexexlem4d 17608 to prove the induction step in mreexexd 17609. See the proof of Proposition 4.2.1 in [FaureFrolicher] p. 86 to 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (¬ 𝑔 ∈ (𝐹 ∖ {𝑌}) ∧ ((𝐹 ∖ {𝑌}) ∪ (𝐻 ∪ {𝑔})) ∈ 𝐼)) | ||
| Theorem | mreexexlem3d 17607* | Base case of the induction in mreexexd 17609. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 = ∅ ∨ 𝐺 = ∅)) ⇒ ⊢ (𝜑 → ∃𝑖 ∈ 𝒫 𝐺(𝐹 ≈ 𝑖 ∧ (𝑖 ∪ 𝐻) ∈ 𝐼)) | ||
| Theorem | mreexexlem4d 17608* | Induction step of the induction in mreexexd 17609. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ ω) & ⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) & ⊢ (𝜑 → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) | ||
| Theorem | mreexexd 17609* | Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹 ∪ 𝐻) is independent, 𝐹 is contained in the closure of (𝐺 ∪ 𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞 ∪ 𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴 ∖ 𝐵) or (𝐵 ∖ 𝐴) is finite. The theorem is proven by induction using mreexexlem3d 17607 for the base case and mreexexlem4d 17608 for the induction step. (Contributed by David Moews, 1-May-2017.) Remove dependencies on ax-rep 5234 and ax-ac2 10416. (Revised by Brendan Leahy, 2-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) & ⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) & ⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) & ⊢ (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹 ≈ 𝑞 ∧ (𝑞 ∪ 𝐻) ∈ 𝐼)) | ||
| Theorem | mreexdomd 17610* | In a Moore system whose closure operator has the exchange property, if 𝑆 is independent and contained in the closure of 𝑇, and either 𝑆 or 𝑇 is finite, then 𝑇 dominates 𝑆. This is an immediate consequence of mreexexd 17609. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) & ⊢ (𝜑 → 𝑇 ⊆ 𝑋) & ⊢ (𝜑 → (𝑆 ∈ Fin ∨ 𝑇 ∈ Fin)) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝑆 ≼ 𝑇) | ||
| Theorem | mreexfidimd 17611* | In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd 17610 twice. This implies a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) & ⊢ (𝜑 → 𝑆 ∈ 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Theorem | isacs 17612* | A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠)))) | ||
| Theorem | acsmre 17613 | Algebraic closure systems are closure systems. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝐶 ∈ (Moore‘𝑋)) | ||
| Theorem | isacs2 17614* | In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝑠 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑠 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑠))) | ||
| Theorem | acsfiel 17615* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝐶 ↔ (𝑆 ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆))) | ||
| Theorem | acsfiel2 17616* | A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹‘𝑦) ⊆ 𝑆)) | ||
| Theorem | acsmred 17617 | An algebraic closure system is also a Moore system. Deduction form of acsmre 17613. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | ||
| Theorem | isacs1i 17618* | A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋)) | ||
| Theorem | mreacs 17619 | Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | ||
| Theorem | acsfn 17620* | Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) ∧ (𝑇 ⊆ 𝑋 ∧ 𝑇 ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ (𝑇 ⊆ 𝑎 → 𝐾 ∈ 𝑎)} ∈ (ACS‘𝑋)) | ||
| Theorem | acsfn0 17621* | Algebraicity of a point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐾 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ 𝐾 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Theorem | acsfn1 17622* | Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Theorem | acsfn1c 17623* | Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝐾 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Theorem | acsfn2 17624* | Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Syntax | ccat 17625 | Extend class notation with the class of categories. |
| class Cat | ||
| Syntax | ccid 17626 | Extend class notation with the identity arrow of a category. |
| class Id | ||
| Syntax | chomf 17627 | Extend class notation to include functionalized Hom-set extractor. |
| class Homf | ||
| Syntax | ccomf 17628 | Extend class notation to include functionalized composition operation. |
| class compf | ||
| Definition | df-cat 17629* | A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated with those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. Definition in [Lang] p. 53, without the axiom CAT 1, i.e., pairwise disjointness of hom-sets (cat1 18059). See setc2obas 18056 and setc2ohom 18057 for a counterexample. In contrast to definition 3.1 of [Adamek] p. 21, where "A category is a quadruple A = (O, hom, id, o)", a category is defined as an extensible structure consisting of three slots: the objects "O" ((Base‘𝑐)), the morphisms "hom" ((Hom ‘𝑐)) and the composition law "o" ((comp‘𝑐)). The identities "id" are defined by their properties related to morphisms and their composition, see condition 3.1(b) in [Adamek] p. 21 and df-cid 17630. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
| ⊢ Cat = {𝑐 ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} | ||
| Definition | df-cid 17630* | Define the category identity arrow. Since it is uniquely defined when it exists, we do not need to add it to the data of the category, and instead extract it by uniqueness. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ Id = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓)))) | ||
| Definition | df-homf 17631* | Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) | ||
| Definition | df-comf 17632* | Define the functionalized composition operator, which is exactly like comp but is guaranteed to be a function of the proper type. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) | ||
| Theorem | iscat 17633* | The predicate "is a category". (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) | ||
| Theorem | iscatd 17634* | Properties that determine a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | catidex 17635* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
| Theorem | catideu 17636* | Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓)) | ||
| Theorem | cidfval 17637* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ (℩𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)))) | ||
| Theorem | cidval 17638* | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = (℩𝑔 ∈ (𝑋𝐻𝑋)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑋)(𝑔(〈𝑦, 𝑋〉 · 𝑋)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑋𝐻𝑦)(𝑓(〈𝑋, 𝑋〉 · 𝑦)𝑔) = 𝑓))) | ||
| Theorem | cidffn 17639 | The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ Id Fn Cat | ||
| Theorem | cidfn 17640 | The identity arrow operator is a function from objects to arrows. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 1 Fn 𝐵) | ||
| Theorem | catidd 17641* | Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 1 ∈ (𝑥𝐻𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑦𝐻𝑥))) → ( 1 (〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ (𝑥𝐻𝑦))) → (𝑓(〈𝑥, 𝑥〉 · 𝑦) 1 ) = 𝑓) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ 1 )) | ||
| Theorem | iscatd2 17642* | Version of iscatd 17634 with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
| Theorem | catidcl 17643 | Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) | ||
| Theorem | catlid 17644 | Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (( 1 ‘𝑌)(〈𝑋, 𝑌〉 · 𝑌)𝐹) = 𝐹) | ||
| Theorem | catrid 17645 | Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑋〉 · 𝑌)( 1 ‘𝑋)) = 𝐹) | ||
| Theorem | catcocl 17646 | Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | catass 17647 | Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑌, 𝑍〉 · 𝑊)𝐺)(〈𝑋, 𝑌〉 · 𝑊)𝐹) = (𝐾(〈𝑋, 𝑍〉 · 𝑊)(𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹))) | ||
| Theorem | catcone0 17648 | Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → (𝑋𝐻𝑌) ≠ ∅) & ⊢ (𝜑 → (𝑌𝐻𝑍) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑍) ≠ ∅) | ||
| Theorem | 0catg 17649 | Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ Cat) | ||
| Theorem | 0cat 17650 | The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ ∅ ∈ Cat | ||
| Theorem | homffval 17651* | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
| ⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) | ||
| Theorem | fnhomeqhomf 17652 | If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
| ⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) | ||
| Theorem | homfval 17653 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | homffn 17654 | The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝐹 = (Homf ‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐹 Fn (𝐵 × 𝐵) | ||
| Theorem | homfeq 17655* | Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) ⇒ ⊢ (𝜑 → ((Homf ‘𝐶) = (Homf ‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) = (𝑥𝐽𝑦))) | ||
| Theorem | homfeqd 17656 | If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) & ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | ||
| Theorem | homfeqbas 17657 | Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) | ||
| Theorem | homfeqval 17658 | Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) | ||
| Theorem | comfffval 17659* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
| Theorem | comffval 17660* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
| Theorem | comfval 17661 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
| Theorem | comfffval2 17662* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐻𝑦), 𝑓 ∈ (𝐻‘𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) | ||
| Theorem | comffval2 17663* | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) | ||
| Theorem | comfval2 17664 | Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) | ||
| Theorem | comfffn 17665 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝑂 Fn ((𝐵 × 𝐵) × 𝐵) | ||
| Theorem | comffn 17666 | The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝑂 = (compf‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) Fn ((𝑌𝐻𝑍) × (𝑋𝐻𝑌))) | ||
| Theorem | comfeq 17667* | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓))) | ||
| Theorem | comfeqd 17668 | Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) | ||
| Theorem | comfeqval 17669 | Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺(〈𝑋, 𝑌〉 ∙ 𝑍)𝐹)) | ||
| Theorem | catpropd 17670 | Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) | ||
| Theorem | cidpropd 17671 | Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (Id‘𝐶) = (Id‘𝐷)) | ||
| Syntax | coppc 17672 | The opposite category operation. |
| class oppCat | ||
| Definition | df-oppc 17673* | Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of [Adamek] p. 25. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) | ||
| Theorem | oppcval 17674* | Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st ‘𝑢)))〉)) | ||
| Theorem | oppchomfval 17675 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ tpos 𝐻 = (Hom ‘𝑂) | ||
| Theorem | oppchom 17676 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) | ||
| Theorem | oppccofval 17677 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉(comp‘𝑂)𝑍) = tpos (〈𝑍, 𝑌〉 · 𝑋)) | ||
| Theorem | oppcco 17678 | Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉(comp‘𝑂)𝑍)𝐹) = (𝐹(〈𝑍, 𝑌〉 · 𝑋)𝐺)) | ||
| Theorem | oppcbas 17679 | Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | oppccatid 17680 | Lemma for oppccat 17683. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶))) | ||
| Theorem | oppchomf 17681 | Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐻 = (Homf ‘𝐶) ⇒ ⊢ tpos 𝐻 = (Homf ‘𝑂) | ||
| Theorem | oppcid 17682 | Identity function of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Id‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → (Id‘𝑂) = 𝐵) | ||
| Theorem | oppccat 17683 | An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) | ||
| Theorem | 2oppcbas 17684 | The double opposite category has the same objects as the original category. Intended for use with property lemmas such as monpropd 17699. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ 𝐵 = (Base‘(oppCat‘𝑂)) | ||
| Theorem | 2oppchomf 17685 | The double opposite category has the same morphisms as the original category. Intended for use with property lemmas such as monpropd 17699. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) | ||
| Theorem | 2oppccomf 17686 | The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17699. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) | ||
| Theorem | oppchomfpropd 17687 | If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) ⇒ ⊢ (𝜑 → (Homf ‘(oppCat‘𝐶)) = (Homf ‘(oppCat‘𝐷))) | ||
| Theorem | oppccomfpropd 17688 | If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) ⇒ ⊢ (𝜑 → (compf‘(oppCat‘𝐶)) = (compf‘(oppCat‘𝐷))) | ||
| Theorem | oppccatf 17689 | oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ (oppCat ↾ Cat):Cat⟶Cat | ||
| Syntax | cmon 17690 | Extend class notation with the class of all monomorphisms. |
| class Mono | ||
| Syntax | cepi 17691 | Extend class notation with the class of all epimorphisms. |
| class Epi | ||
| Definition | df-mon 17692* | Function returning the monomorphisms of the category 𝑐. JFM CAT1 def. 10. (Contributed by FL, 5-Dec-2007.) (Revised by Mario Carneiro, 2-Jan-2017.) |
| ⊢ Mono = (𝑐 ∈ Cat ↦ ⦋(Base‘𝑐) / 𝑏⦌⦋(Hom ‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) | ||
| Definition | df-epi 17693 | Function returning the epimorphisms of the category 𝑐. JFM CAT1 def. 11. (Contributed by FL, 8-Aug-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
| ⊢ Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐))) | ||
| Theorem | monfval 17694* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑀 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(〈𝑧, 𝑥〉 · 𝑦)𝑔))})) | ||
| Theorem | ismon 17695* | Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) | ||
| Theorem | ismon2 17696* | Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((𝐹(〈𝑧, 𝑋〉 · 𝑌)𝑔) = (𝐹(〈𝑧, 𝑋〉 · 𝑌)ℎ) → 𝑔 = ℎ)))) | ||
| Theorem | monhom 17697 | A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) | ||
| Theorem | moni 17698 | Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐶) & ⊢ 𝑀 = (Mono‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝑀𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) ⇒ ⊢ (𝜑 → ((𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐺) = (𝐹(〈𝑍, 𝑋〉 · 𝑌)𝐾) ↔ 𝐺 = 𝐾)) | ||
| Theorem | monpropd 17699 | If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Mono‘𝐶) = (Mono‘𝐷)) | ||
| Theorem | oppcmon 17700 | A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑀 = (Mono‘𝑂) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑌𝐸𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |