MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 17553
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐡 = (Baseβ€˜πΆ)
oppcval.h 𝐻 = (Hom β€˜πΆ)
oppcval.x Β· = (compβ€˜πΆ)
oppcval.o 𝑂 = (oppCatβ€˜πΆ)
Assertion
Ref Expression
oppcval (𝐢 ∈ 𝑉 β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
Distinct variable group:   𝑧,𝑒,𝐢
Allowed substitution hints:   𝐡(𝑧,𝑒)   Β· (𝑧,𝑒)   𝐻(𝑧,𝑒)   𝑂(𝑧,𝑒)   𝑉(𝑧,𝑒)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCatβ€˜πΆ)
2 elex 3461 . . 3 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐢 β†’ 𝑐 = 𝐢)
4 fveq2 6839 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (Hom β€˜π‘) = (Hom β€˜πΆ))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom β€˜πΆ)
64, 5eqtr4di 2795 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Hom β€˜π‘) = 𝐻)
76tposeqd 8152 . . . . . . 7 (𝑐 = 𝐢 β†’ tpos (Hom β€˜π‘) = tpos 𝐻)
87opeq2d 4835 . . . . . 6 (𝑐 = 𝐢 β†’ ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩ = ⟨(Hom β€˜ndx), tpos 𝐻⟩)
93, 8oveq12d 7369 . . . . 5 (𝑐 = 𝐢 β†’ (𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) = (𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩))
10 fveq2 6839 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΆ))
11 oppcval.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΆ)
1210, 11eqtr4di 2795 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = 𝐡)
1312sqxpeqd 5663 . . . . . . 7 (𝑐 = 𝐢 β†’ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)) = (𝐡 Γ— 𝐡))
14 fveq2 6839 . . . . . . . . . 10 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = (compβ€˜πΆ))
15 oppcval.x . . . . . . . . . 10 Β· = (compβ€˜πΆ)
1614, 15eqtr4di 2795 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = Β· )
1716oveqd 7368 . . . . . . . 8 (𝑐 = 𝐢 β†’ (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)) = (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))
1817tposeqd 8152 . . . . . . 7 (𝑐 = 𝐢 β†’ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)) = tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))
1913, 12, 18mpoeq123dv 7426 . . . . . 6 (𝑐 = 𝐢 β†’ (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’))) = (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))))
2019opeq2d 4835 . . . . 5 (𝑐 = 𝐢 β†’ ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩ = ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)
219, 20oveq12d 7369 . . . 4 (𝑐 = 𝐢 β†’ ((𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
22 df-oppc 17552 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩))
23 ovex 7384 . . . 4 ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩) ∈ V
2421, 22, 23fvmpt 6945 . . 3 (𝐢 ∈ V β†’ (oppCatβ€˜πΆ) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
252, 24syl 17 . 2 (𝐢 ∈ 𝑉 β†’ (oppCatβ€˜πΆ) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
261, 25eqtrid 2789 1 (𝐢 ∈ 𝑉 β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3443  βŸ¨cop 4590   Γ— cxp 5629  β€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353  1st c1st 7911  2nd c2nd 7912  tpos ctpos 8148   sSet csts 16995  ndxcnx 17025  Basecbs 17043  Hom chom 17104  compcco 17105  oppCatcoppc 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6445  df-fun 6495  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-tpos 8149  df-oppc 17552
This theorem is referenced by:  oppchomfval  17554  oppchomfvalOLD  17555  oppccofval  17557  oppcbas  17559  oppcbasOLD  17560  catcoppccl  17963  catcoppcclOLD  17964
  Copyright terms: Public domain W3C validator