MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 17339
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐵 = (Base‘𝐶)
oppcval.h 𝐻 = (Hom ‘𝐶)
oppcval.x · = (comp‘𝐶)
oppcval.o 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppcval (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Distinct variable group:   𝑧,𝑢,𝐶
Allowed substitution hints:   𝐵(𝑧,𝑢)   · (𝑧,𝑢)   𝐻(𝑧,𝑢)   𝑂(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCat‘𝐶)
2 elex 3440 . . 3 (𝐶𝑉𝐶 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
4 fveq2 6756 . . . . . . . . 9 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
64, 5eqtr4di 2797 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
76tposeqd 8016 . . . . . . 7 (𝑐 = 𝐶 → tpos (Hom ‘𝑐) = tpos 𝐻)
87opeq2d 4808 . . . . . 6 (𝑐 = 𝐶 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩ = ⟨(Hom ‘ndx), tpos 𝐻⟩)
93, 8oveq12d 7273 . . . . 5 (𝑐 = 𝐶 → (𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) = (𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))
10 fveq2 6756 . . . . . . . . 9 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
11 oppcval.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11eqtr4di 2797 . . . . . . . 8 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
1312sqxpeqd 5612 . . . . . . 7 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
14 fveq2 6756 . . . . . . . . . 10 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
15 oppcval.x . . . . . . . . . 10 · = (comp‘𝐶)
1614, 15eqtr4di 2797 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1716oveqd 7272 . . . . . . . 8 (𝑐 = 𝐶 → (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1817tposeqd 8016 . . . . . . 7 (𝑐 = 𝐶 → tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1913, 12, 18mpoeq123dv 7328 . . . . . 6 (𝑐 = 𝐶 → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
2019opeq2d 4808 . . . . 5 (𝑐 = 𝐶 → ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩ = ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)
219, 20oveq12d 7273 . . . 4 (𝑐 = 𝐶 → ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
22 df-oppc 17338 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩))
23 ovex 7288 . . . 4 ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩) ∈ V
2421, 22, 23fvmpt 6857 . . 3 (𝐶 ∈ V → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
252, 24syl 17 . 2 (𝐶𝑉 → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
261, 25eqtrid 2790 1 (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  tpos ctpos 8012   sSet csts 16792  ndxcnx 16822  Basecbs 16840  Hom chom 16899  compcco 16900  oppCatcoppc 17337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-tpos 8013  df-oppc 17338
This theorem is referenced by:  oppchomfval  17340  oppchomfvalOLD  17341  oppccofval  17343  oppcbas  17345  oppcbasOLD  17346  catcoppccl  17748  catcoppcclOLD  17749
  Copyright terms: Public domain W3C validator