MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 17681
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐵 = (Base‘𝐶)
oppcval.h 𝐻 = (Hom ‘𝐶)
oppcval.x · = (comp‘𝐶)
oppcval.o 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppcval (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Distinct variable group:   𝑧,𝑢,𝐶
Allowed substitution hints:   𝐵(𝑧,𝑢)   · (𝑧,𝑢)   𝐻(𝑧,𝑢)   𝑂(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCat‘𝐶)
2 elex 3471 . . 3 (𝐶𝑉𝐶 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
4 fveq2 6861 . . . . . . . . 9 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
64, 5eqtr4di 2783 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
76tposeqd 8211 . . . . . . 7 (𝑐 = 𝐶 → tpos (Hom ‘𝑐) = tpos 𝐻)
87opeq2d 4847 . . . . . 6 (𝑐 = 𝐶 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩ = ⟨(Hom ‘ndx), tpos 𝐻⟩)
93, 8oveq12d 7408 . . . . 5 (𝑐 = 𝐶 → (𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) = (𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))
10 fveq2 6861 . . . . . . . . 9 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
11 oppcval.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11eqtr4di 2783 . . . . . . . 8 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
1312sqxpeqd 5673 . . . . . . 7 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
14 fveq2 6861 . . . . . . . . . 10 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
15 oppcval.x . . . . . . . . . 10 · = (comp‘𝐶)
1614, 15eqtr4di 2783 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1716oveqd 7407 . . . . . . . 8 (𝑐 = 𝐶 → (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1817tposeqd 8211 . . . . . . 7 (𝑐 = 𝐶 → tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1913, 12, 18mpoeq123dv 7467 . . . . . 6 (𝑐 = 𝐶 → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
2019opeq2d 4847 . . . . 5 (𝑐 = 𝐶 → ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩ = ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)
219, 20oveq12d 7408 . . . 4 (𝑐 = 𝐶 → ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
22 df-oppc 17680 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩))
23 ovex 7423 . . . 4 ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩) ∈ V
2421, 22, 23fvmpt 6971 . . 3 (𝐶 ∈ V → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
252, 24syl 17 . 2 (𝐶𝑉 → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
261, 25eqtrid 2777 1 (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8207   sSet csts 17140  ndxcnx 17170  Basecbs 17186  Hom chom 17238  compcco 17239  oppCatcoppc 17679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-tpos 8208  df-oppc 17680
This theorem is referenced by:  oppchomfval  17682  oppccofval  17684  oppcbas  17686  catcoppccl  18086
  Copyright terms: Public domain W3C validator