MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 17653
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐡 = (Baseβ€˜πΆ)
oppcval.h 𝐻 = (Hom β€˜πΆ)
oppcval.x Β· = (compβ€˜πΆ)
oppcval.o 𝑂 = (oppCatβ€˜πΆ)
Assertion
Ref Expression
oppcval (𝐢 ∈ 𝑉 β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
Distinct variable group:   𝑧,𝑒,𝐢
Allowed substitution hints:   𝐡(𝑧,𝑒)   Β· (𝑧,𝑒)   𝐻(𝑧,𝑒)   𝑂(𝑧,𝑒)   𝑉(𝑧,𝑒)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCatβ€˜πΆ)
2 elex 3492 . . 3 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐢 β†’ 𝑐 = 𝐢)
4 fveq2 6888 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (Hom β€˜π‘) = (Hom β€˜πΆ))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom β€˜πΆ)
64, 5eqtr4di 2790 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Hom β€˜π‘) = 𝐻)
76tposeqd 8210 . . . . . . 7 (𝑐 = 𝐢 β†’ tpos (Hom β€˜π‘) = tpos 𝐻)
87opeq2d 4879 . . . . . 6 (𝑐 = 𝐢 β†’ ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩ = ⟨(Hom β€˜ndx), tpos 𝐻⟩)
93, 8oveq12d 7423 . . . . 5 (𝑐 = 𝐢 β†’ (𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) = (𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩))
10 fveq2 6888 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΆ))
11 oppcval.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΆ)
1210, 11eqtr4di 2790 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = 𝐡)
1312sqxpeqd 5707 . . . . . . 7 (𝑐 = 𝐢 β†’ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)) = (𝐡 Γ— 𝐡))
14 fveq2 6888 . . . . . . . . . 10 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = (compβ€˜πΆ))
15 oppcval.x . . . . . . . . . 10 Β· = (compβ€˜πΆ)
1614, 15eqtr4di 2790 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = Β· )
1716oveqd 7422 . . . . . . . 8 (𝑐 = 𝐢 β†’ (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)) = (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))
1817tposeqd 8210 . . . . . . 7 (𝑐 = 𝐢 β†’ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)) = tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))
1913, 12, 18mpoeq123dv 7480 . . . . . 6 (𝑐 = 𝐢 β†’ (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’))) = (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’))))
2019opeq2d 4879 . . . . 5 (𝑐 = 𝐢 β†’ ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩ = ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩)
219, 20oveq12d 7423 . . . 4 (𝑐 = 𝐢 β†’ ((𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
22 df-oppc 17652 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom β€˜ndx), tpos (Hom β€˜π‘)⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ ((Baseβ€˜π‘) Γ— (Baseβ€˜π‘)), 𝑧 ∈ (Baseβ€˜π‘) ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩(compβ€˜π‘)(1st β€˜π‘’)))⟩))
23 ovex 7438 . . . 4 ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩) ∈ V
2421, 22, 23fvmpt 6995 . . 3 (𝐢 ∈ V β†’ (oppCatβ€˜πΆ) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
252, 24syl 17 . 2 (𝐢 ∈ 𝑉 β†’ (oppCatβ€˜πΆ) = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
261, 25eqtrid 2784 1 (𝐢 ∈ 𝑉 β†’ 𝑂 = ((𝐢 sSet ⟨(Hom β€˜ndx), tpos 𝐻⟩) sSet ⟨(compβ€˜ndx), (𝑒 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ tpos (βŸ¨π‘§, (2nd β€˜π‘’)⟩ Β· (1st β€˜π‘’)))⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8206   sSet csts 17092  ndxcnx 17122  Basecbs 17140  Hom chom 17204  compcco 17205  oppCatcoppc 17651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-tpos 8207  df-oppc 17652
This theorem is referenced by:  oppchomfval  17654  oppchomfvalOLD  17655  oppccofval  17657  oppcbas  17659  oppcbasOLD  17660  catcoppccl  18063  catcoppcclOLD  18064
  Copyright terms: Public domain W3C validator