MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 17614
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐵 = (Base‘𝐶)
oppcval.h 𝐻 = (Hom ‘𝐶)
oppcval.x · = (comp‘𝐶)
oppcval.o 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppcval (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Distinct variable group:   𝑧,𝑢,𝐶
Allowed substitution hints:   𝐵(𝑧,𝑢)   · (𝑧,𝑢)   𝐻(𝑧,𝑢)   𝑂(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCat‘𝐶)
2 elex 3457 . . 3 (𝐶𝑉𝐶 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
4 fveq2 6817 . . . . . . . . 9 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
64, 5eqtr4di 2784 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
76tposeqd 8154 . . . . . . 7 (𝑐 = 𝐶 → tpos (Hom ‘𝑐) = tpos 𝐻)
87opeq2d 4827 . . . . . 6 (𝑐 = 𝐶 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩ = ⟨(Hom ‘ndx), tpos 𝐻⟩)
93, 8oveq12d 7359 . . . . 5 (𝑐 = 𝐶 → (𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) = (𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))
10 fveq2 6817 . . . . . . . . 9 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
11 oppcval.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11eqtr4di 2784 . . . . . . . 8 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
1312sqxpeqd 5643 . . . . . . 7 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
14 fveq2 6817 . . . . . . . . . 10 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
15 oppcval.x . . . . . . . . . 10 · = (comp‘𝐶)
1614, 15eqtr4di 2784 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1716oveqd 7358 . . . . . . . 8 (𝑐 = 𝐶 → (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1817tposeqd 8154 . . . . . . 7 (𝑐 = 𝐶 → tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1913, 12, 18mpoeq123dv 7416 . . . . . 6 (𝑐 = 𝐶 → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
2019opeq2d 4827 . . . . 5 (𝑐 = 𝐶 → ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩ = ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)
219, 20oveq12d 7359 . . . 4 (𝑐 = 𝐶 → ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
22 df-oppc 17613 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩))
23 ovex 7374 . . . 4 ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩) ∈ V
2421, 22, 23fvmpt 6924 . . 3 (𝐶 ∈ V → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
252, 24syl 17 . 2 (𝐶𝑉 → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
261, 25eqtrid 2778 1 (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577   × cxp 5609  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150   sSet csts 17069  ndxcnx 17099  Basecbs 17115  Hom chom 17167  compcco 17168  oppCatcoppc 17612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-tpos 8151  df-oppc 17613
This theorem is referenced by:  oppchomfval  17615  oppccofval  17617  oppcbas  17619  catcoppccl  18019
  Copyright terms: Public domain W3C validator