| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppccatf | Structured version Visualization version GIF version | ||
| Description: oppCat restricted to Cat is a function from Cat to Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| Ref | Expression |
|---|---|
| oppccatf | ⊢ (oppCat ↾ Cat):Cat⟶Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oppc 17628 | . . . 4 ⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) | |
| 2 | 1 | funmpt2 6528 | . . 3 ⊢ Fun oppCat |
| 3 | ffvresb 7067 | . . 3 ⊢ (Fun oppCat → ((oppCat ↾ Cat):Cat⟶Cat ↔ ∀𝑐 ∈ Cat (𝑐 ∈ dom oppCat ∧ (oppCat‘𝑐) ∈ Cat))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((oppCat ↾ Cat):Cat⟶Cat ↔ ∀𝑐 ∈ Cat (𝑐 ∈ dom oppCat ∧ (oppCat‘𝑐) ∈ Cat)) |
| 5 | elex 3459 | . . . 4 ⊢ (𝑐 ∈ Cat → 𝑐 ∈ V) | |
| 6 | ovex 7388 | . . . . 5 ⊢ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝑓)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉) ∈ V | |
| 7 | 6, 1 | dmmpti 6633 | . . . 4 ⊢ dom oppCat = V |
| 8 | 5, 7 | eleqtrrdi 2844 | . . 3 ⊢ (𝑐 ∈ Cat → 𝑐 ∈ dom oppCat) |
| 9 | eqid 2733 | . . . 4 ⊢ (oppCat‘𝑐) = (oppCat‘𝑐) | |
| 10 | 9 | oppccat 17638 | . . 3 ⊢ (𝑐 ∈ Cat → (oppCat‘𝑐) ∈ Cat) |
| 11 | 8, 10 | jca 511 | . 2 ⊢ (𝑐 ∈ Cat → (𝑐 ∈ dom oppCat ∧ (oppCat‘𝑐) ∈ Cat)) |
| 12 | 4, 11 | mprgbir 3056 | 1 ⊢ (oppCat ↾ Cat):Cat⟶Cat |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3049 Vcvv 3438 〈cop 4583 × cxp 5619 dom cdm 5621 ↾ cres 5623 Fun wfun 6483 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 2nd c2nd 7929 tpos ctpos 8164 sSet csts 17084 ndxcnx 17114 Basecbs 17130 Hom chom 17182 compcco 17183 Catccat 17580 oppCatcoppc 17627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-hom 17195 df-cco 17196 df-cat 17584 df-cid 17585 df-oppc 17628 |
| This theorem is referenced by: dfinito3 17922 dftermo3 17923 |
| Copyright terms: Public domain | W3C validator |